Department of Computer Science
Permanent URI for this communityhttp://localhost:4000/handle/20.500.12504/208
Browse
Browsing Department of Computer Science by Subject "Crop disease classification,"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Classification of cassava leaf diseases using deep Gaussian transfer learning model(Engineering Reports, 2023-03) Emmanuel, Ahishakiye; Ronald, Waweru Mwangi; Petronilla, Murithi; Fredrick, Kanobe; Danison, TaremwaIn Sub-Saharan Africa, experts visually examine the plants and look for disease symptoms on the leaves to diagnose cassava diseases, a subjective method. Machine learning algorithms have been employed to quickly identify and classify crop diseases. In this study, we propose a model that integrates a transfer learning approach with a deep Gaussian convolutional neural network model. In this study, two pre-trained transfer learning models were used, that is, Mobile Net V2 and VGG16, together with three different kernels: a hybrid kernel (a product of a squared exponential kernel and a rational quadratic kernel), a squared expo-nential kernel, and a rational quadratic kernel. In experiments using MobileNet V2 and the three kernels, the hybrid kernel performed better, with an accuracy of 90.11%, compared to 86.03% and 85.14% for the squared exponential kernel and a rational quadratic kernel, respectively. Additionally, experiments using VGG16 and the three kernels showed that the hybrid kernel performed better, with an accuracy of 88.63%, compared to the squared exponential kernel’s accuracy of 84.62% and the rational quadratic kernel’s accuracy of 83.95%, respectively. All the experiments were done using a traditional computer with no access to GPU and this was the major limitation of the study.