Classification of cassava leaf diseases using deep Gaussian transfer learning model

Abstract

In Sub-Saharan Africa, experts visually examine the plants and look for disease symptoms on the leaves to diagnose cassava diseases, a subjective method. Machine learning algorithms have been employed to quickly identify and classify crop diseases. In this study, we propose a model that integrates a transfer learning approach with a deep Gaussian convolutional neural network model. In this study, two pre-trained transfer learning models were used, that is, Mobile Net V2 and VGG16, together with three different kernels: a hybrid kernel (a product of a squared exponential kernel and a rational quadratic kernel), a squared expo-nential kernel, and a rational quadratic kernel. In experiments using MobileNet V2 and the three kernels, the hybrid kernel performed better, with an accuracy of 90.11%, compared to 86.03% and 85.14% for the squared exponential kernel and a rational quadratic kernel, respectively. Additionally, experiments using VGG16 and the three kernels showed that the hybrid kernel performed better, with an accuracy of 88.63%, compared to the squared exponential kernel’s accuracy of 84.62% and the rational quadratic kernel’s accuracy of 83.95%, respectively. All the experiments were done using a traditional computer with no access to GPU and this was the major limitation of the study.

Description

Keywords

Crop disease classification,, Deep Gaussian processes,, Gaussian processes,, Kernel functions

Citation

Emmanuel, A., Mwangi, R. W., Murithi, P., Fredrick, K., & Danison, T. (2022). Classification of cassava leaf diseases using deep Gaussian transfer learning model. Engineering Reports, e12651.

Collections