Repository logo
Communities & Collections
All of KYUSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Meifang Zhu"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bifunctional catechol-based coating strategy to construct highly effective antimicrobial polyethylene microfibers for personal protective equipment
    (ScienceDirect: Progress in Organic Coatings, 2025-01) Mbonimpa Innocent; Gongxun Zhai; Mugaanire Tendo Innocent; Jialiang Zhou; Xin Dai; Tianqi Jiang; Jinqi Wang; Hengxue Xiang; Meifang Zhu
    Polyethylene (PE) microfiber materials are of great interest in the production of personal protective equipment (PPE) due to their cost-effectiveness and excellent mechanical and barrier properties. However, they lack inherent antibacterial properties and are therefore susceptible to attack and contamination by microorganisms, leading to the spread of associated infections. Incorporating antibacterial agents onto the material's surface is an effective approach to achieve antimicrobial functionality. Nevertheless, this is limited by the chemical inertness of PE, thus requiring surface modification treatments. Here, we successfully synthesized bifunctional catechol-based antibacterial polymeric coatings and applied them to develop durable antibacterial PE fabrics through dip-coating. Cationic copolymers comprising dopamine methacrylamide (DMA) and hexylated vinyl pyridine (QVP) moieties were prepared through free radical polymerization (FRP) followed by N-alkylation with hexyl bromide. The copolymers were extensively studied to investigate the effect of composition on the yield and antibacterial properties. The copolymers exhibited good antibacterial properties in an aqueous solution, and the antibacterial activity and yield were higher in copolymers with higher QVP units. In addition, the prepared antibacterial PE fabrics exhibited good antibacterial activity against gram-positive Bacillus subtilis (B. subtilis) and gram-negative Escherichia coli (E. coli), which remained unaffected by several laundering cycles, thus hold potential for use in antibacterial protective textiles.

KYUSpace Copyright © 2025 KYU Library

  • Privacy policy
  • End User Agreement
  • Send Feedback