Bifunctional catechol-based coating strategy to construct highly effective antimicrobial polyethylene microfibers for personal protective equipment
Date
2025-01
Journal Title
Journal ISSN
Volume Title
Publisher
ScienceDirect: Progress in Organic Coatings
Abstract
Polyethylene (PE) microfiber materials are of great interest in the production of personal protective equipment (PPE) due to their cost-effectiveness and excellent mechanical and barrier properties. However, they lack inherent antibacterial properties and are therefore susceptible to attack and contamination by microorganisms, leading to the spread of associated infections. Incorporating antibacterial agents onto the material's surface is an effective approach to achieve antimicrobial functionality. Nevertheless, this is limited by the chemical inertness of PE, thus requiring surface modification treatments. Here, we successfully synthesized bifunctional catechol-based antibacterial polymeric coatings and applied them to develop durable antibacterial PE fabrics through dip-coating. Cationic copolymers comprising dopamine methacrylamide (DMA) and hexylated vinyl pyridine (QVP) moieties were prepared through free radical polymerization (FRP) followed by N-alkylation with hexyl bromide. The copolymers were extensively studied to investigate the effect of composition on the yield and antibacterial properties. The copolymers exhibited good antibacterial properties in an aqueous solution, and the antibacterial activity and yield were higher in copolymers with higher QVP units. In addition, the prepared antibacterial PE fabrics exhibited good antibacterial activity against gram-positive Bacillus subtilis (B. subtilis) and gram-negative Escherichia coli (E. coli), which remained unaffected by several laundering cycles, thus hold potential for use in antibacterial protective textiles.
Description
Keywords
Bifunctional antibacterial copolymer, Antibacterial PE fabric, Antibacterial properties of textiles, Hexylated vinyl pyridine (QVP) moieties, Dopamine methacrylamide (DMA), Cationic copolymers
Citation
Innocent, M., Zhai, G., Innocent, M. T., Zhou, J., Dai, X., Jiang, T., ... & Zhu, M. (2025). Bifunctional catechol-based coating strategy to construct highly effective antimicrobial polyethylene microfibers for personal protective equipment. Progress in Organic Coatings, 198, 108916.