Browsing by Author "Sam, Bulolo"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Interpretation of constant suction direct shear test(EDP Sciences, 2023-04) Sam, Bulolo; Eng-Choon, LeongConstant suction direct shear test enables the understanding of the failure mechanism in rainfall- induced landslides. It can be conducted using a conventional direct shear apparatus with some modifications. The constant suction direct shear test is carried out in two stages. In the first stage, the unsaturated soil specimen is consolidated to the target net normal stress and matric suction then sheared in the second stage. Matric suction is usually controlled using the axis-translation principle. It is commonly observed that the shear stress of an unsaturated soil sheared in the direct shear shows a strain-hardening behaviour at large displacements making the determination of the failure stress difficult. Hence, the objective of this study is to critically examine the constant suction direct shear tests and the analysis of the test results to obtain the shear strength parameters for unsaturated soils. Constant suction direct shear test data were collated from the literature. It was found that the interpretation of the direct shear test has two inconsistencies: (1) taking failure shear stress at arbitrary displacement strain or limit, dependent on the size of the direct shear apparatus, and (2) correcting only shear stress for contact area. The effect of these two consequences on the interpretation of the direct shear test range from negligible to significant. The study shows that arbitrary determination of failure shear stress can be resolved by plotting the direct shear test results using a stress- path plot. The effects of area correction are shown to be almost negligible for small horizontal displacements of less than 2 mm for both square and circular shear boxes. A more consistent interpretation of the constant suction direct shear test is demonstrated where both these inconsistencies are considered.Item Osmotic consolidation of expansive soil(Japanese Geotechnical Society Special Publication, 2019) Sam, Bulolo; E.C., LeongThe mechanical behavior of expansive soils is influenced by the concentration of salts in their pore water. Research has shown that volume change of soil can occur due to a difference in salt concentration in the pore water between different zones of the soil as a result of either osmotically-induced consolidation or osmotic consolidation. The effect of the salt concentration of the pore water in unsaturated soil mechanics can be expressed as osmotic suction. Very little work has been done to quantify the mechanical equivalence of osmotically-induced and osmotic consolidation. This study attempts to quantify the mechanical stress equivalence of consolidation of an expansive soil submerged in a salt solution. Two remoulded soil samples of kaolin - bentonite mixture in proportions of 70% – 30% and 90% - 10%, (kaolin – bentonite) by dry mass were submerged in different concentrated salt solutions to investigate the effect of osmotic suction. Results showed that osmotic suction caused an additional settlement over the consolidation settlement under a mechanical stress but does not affect the soil compressibility. The osmotic coefficient of volume change (mπ) is only a fraction of the coefficient of volume change (mv).