Browsing by Author "Ruth, Wario"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Comparative Performance of Machine Leaning Algorithms in Prediction of Cervical Cancer(IEEE xplore, 2021-10) Emmanuel, Ahishakiye; Waweru, Mwangi; Petronilla, Muthoni; Lawrence, Nderu; Ruth, WarioCervical cancer is among the most common types of cancer affecting women around the world despite the advances in prevention, screening, diagnosis, and treatment during the past decade. Cervical cancer can be treated if diagnosed in its early stages. Machine learning algorithms like multi-layer perceptron, decision trees, random forest, K-Nearest Neighbor, and Naïve-Bayes have been used for the prediction of cervical cancer to aid in its early diagnoses. In this study, we compare the performance of ensemble methods (AdaBoost, Stochastic Gradient Boosting, Random Forests, and Extra Trees), and classification algorithms (K-Nearest Neighbor and Support Vector Machine) in the prediction of cervical cancer basin g risk factors. Ensemble methods and classification algorithms were used during this study. Ensemble methods were selected because they combine several machine learning techniques into one model to decrease variance, bias, or improve performance while the classification methods were selected because our dataset was generally categorical and therefore could work well with our problem domain. Experimental results revealed that all the algorithms did not perform well on the “imbalanced” dataset. Experiments on balanced revealed an improved performance. The performance metrics used include Fl-score, Area Under Curve (AUC), and Recall. Extra Trees performed better than the rest when using the Fl-score metric, Stochastic Gradient Boosting and Random Forest performed better than the rest when using the AUC metric, K-Nearest Neighbors outperformed the rest using the recall metric, and Extra Trees had the best accuracy 0.96. The application of machine learning methods in the prediction of cervical cancer using risk factors may lead to early detection of the disease which can be treated if diagnosed early. Six algorithms have been considered in this study. The general performance reveals that ensemble methods performed better than classification methods using both imbalanced and balanced datasets.Item An ensemble model based on learning vector quantization algorithms for early detection of cassava diseases using spectral data(SpringerLink, 2023-03) Emmanuel, Ahishakiye; Waweru, Mwangi; Petronilla, Murithi; Ruth, Wario; Fredrick, Kanobe; Taremwa, DanisonIn Sub-Saharan Africa, cassava is the second most significant food crop after maize. Cassava brown streak disease (CBSD) and cassava mosaic virus disease (CMD) combined account for nearly 90% of productivity losses. Automating the detection and classification of crop diseases could help professionals diagnose diseases more accurately and allow farmers in remote locations to monitor their crops without the help of specialists. Machine learning algorithms have been used in the early detection and classification of crop diseases. Previous research has used plant image data captured with smartphones. However, disease symptoms must be observable to use this strategy (using image data). Unfortunately, once symptoms appear on the aerial part of the plant, the root, which is the edible part of the plant, is destroyed. In this study, we used spectral data in a three-class classification challenge for diagnosing cassava diseases. We propose an ensemble model based on Generalized Learning Vector Quantization (GLVQ), Generalized Matrix LVQ (GMLVQ), and Local Generalized Matrix LVQ (LGMLVQ). Experimental results revealed that the LGMLVQ model had the best overall performance on the precision, recall, and F1-score followed by our proposed ensemble model, the GMLVQ model performed third, and finally GLVQ model. Also, using an accuracy performance metric, LGMLVQ had overfitting issues even though it had the highest accuracy of 100%, followed by our proposed ensemble model with an accuracy of 82%, and then the third in performance was the GMLVQ model with an accuracy of 74% and the least performed model on accuracy was GLVQ model with an accuracy of 56%.Item A survey on deep learning in medical image reconstruction(Elsevier, 2021-03) Emmanuel, Ahishakiye; Martin, Bastiaan Van Gijzen; Julius, Tumwiine; Ruth, Wario; Johnes, ObungolochMedical image reconstruction aims to acquire high-quality medical images for clinical usage at minimal cost and risk to the patients. Deep learning and its applications in medical imaging, especially in image reconstruction have received considerable attention in the literature in recent years. This study reviews records obtained elec- tronically through the leading scientific databases (Magnetic Resonance Imaging journal, Google Scholar, Scopus, Science Direct, Elsevier, and from other journal publications) searched using three sets of keywords: (1) Deep learning, image reconstruction, medical imaging; (2) Medical imaging, Deep learning, Image reconstruction; (3) Open science, Open imaging data, Open software. The articles reviewed revealed that deep learning-based re- construction methods improve the quality of reconstructed images qualitatively and quantitatively. However, deep learning techniques are generally computationally expensive, require large amounts of training datasets, lack decent theory to explain why the algorithms work, and have issues of generalization and robustness. The challenge of lack of enough training datasets is currently being addressed by using transfer learning techniques.