Browsing by Author "Chelangat, Cyrus"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Changes in precipitation and evapotranspiration over Lokok and Lokere catchments in Uganda(Bulletin of Atmospheric Science and Technology volume : Springer Link, 2021-03-24) Mubialiwo, Ambrose; Chelangat, Cyrus; Onyutha, CharlesThis study analysed long-term (1948–2016) changes in gridded (0.25° × 0.25°) Princeton Global Forcing (PGF) precipitation and potential evapotranspiration (PET) data over Lokok and Lokere catchments. PGF-based and station datasets were compared. Trend and variability were analysed using a nonparametric technique based on the cumulative sum of the difference between exceedance and non-exceedance counts of data. Seasonal (March-April-May (MAM), June-July-August (JJA), September-October-November (SON), December-January-February (DJF)) and annual precipitation exhibited negative trends (p < 0.05). Positive anomalies in precipitation occurred in the 1950s as well as in the early 2000s till 2016. Negative anomalies existed between 1960 and 2000. Both seasonal and annual PET mainly exhibited increasing trend with alternating positive and negative anomalies for the entire period, except in the southern region. The H0 was rejected (p < 0.05) for SON PET in the North and South of the study area. The H0 was rejected (p < 0.05) for DJF PET in the North. However, H0 was not rejected (p > 0.05) for MAM, JJA and annual PET. Positive and negative correlations were observed between PGF and station precipitation varying from one location to another. The PGF-based PET were lower than the observed PET at Kotido by about 40%. Besides, a close agreement was noticeable between PGF-based and MODIS PET from May to November. This showed the need to improve on the quality of PGF data in reproducing the observed climatic data in areas with low meteorological stations density. Nevertheless, the findings from this study are relevant for planning of predictive adaptation to the effects of climate variability on the water resources management applications. Impacts of human factors and climate change on the hydrology of the study area should be quantified in future research studies.Item Dam breach analysis of Kibimba Dam in Uganda using HEC-RAS and HEC-GeoRAS(Springer, 2023-10) Kiwanuka, Moses; Chelangat, Cyrus; Mubialiwo, Ambrose; Lay, Francis Joel; Mugisha, Ayubu; Mbujje, Webster Joel; Mutanda, Hosea EridadiDam failures have severe consequences on human life and property. In the case of an earth filled Kibimba Dam located in Eastern Uganda, the occurrence of a food equal to or larger than the probable maximum food (PMF) could result in catastrophic economic losses including loss of human life. This study utilized the USACE Hydrologic Engineering Center’s River Analysis System (HEC-RAS) and Hydrologic Engineering Center’s Geographic River Analysis System (HEC-GeoRAS) to analyze the potential dam break of Kibimba Dam, considering overtopping and piping failure scenarios. The results of the analysis revealed that the spillway of Kibimba Dam possesses sufficient capacity to safely discharge a food resulting from a probable maximum food peak of 400 m3/s. Therefore, the dam is not susceptible to breach under the overtopping failure mode. However, the dam failed under the piping failure mode. To assess the downstream impact of the dam break, the breach hydrographs resulting from piping failure were examined. Consequently, the study investigated the effects of food propagation downstream of the dam. This resulted in varying inundation depths of up to 6 m and velocities ranging from 1.2 to 10 m/s. These findings highlight the devastating consequences of Kibimba Dam’s failure, particularly affecting rice field plantations, infrastructure, and other economic activities in the downstream area. Therefore, the outcomes of this study are crucial for the development of Emergency Action Plans that incorporate dam breach and food routing analyses specific to the affected downstream regions. Keywords Dam breach, HEC-RAS, HEC-GeoRAS, KibimbaItem Sensitivity of streamflow to changing rainfall and evapotranspiration in catchments across the Nile Basin(MDPI, 2024-11-25) Onyutha, Charles; Ayugi, Brian Odhiambo; Sian, Kenny Thiam Choy Lim Kam; Babaousmail, Hassen; Arineitwe, Wenseslas; Akobo, Josephine Taata; Chelangat, Cyrus; Mubialiwo, AmbroseThis research focuses on the complex dynamics governing the sensitivity of streamflow to variations in rainfall and potential evapotranspiration (PET) within the Nile basin. By employing a hydrological model, our study examines the interrelationships between meteorological variables and hydrological responses across six catchments (Blue Nile, El Diem, Kabalega, Malaba, Mpanga, and Ribb) and explores the intricate balance between rainfall, PET, and streamflow. Nash Sutcliffe Efficiency (NSE) for calibration of the hydrological model ranged from 0.636 (Ribb) to 0.831 (El Diem). For validation, NSE ranged from 0.608 (Ribb) to 0.811 (Blue Nile). With rainfall kept constant while PET was increased by 5%, the streamflows of the Blue Nile, El Diem, Kabalega, Malaba, Mpanga, and Ribb decreased by 7.00, 5.08, 2.49, 4.10, 1.84, and 7.67%, respectively. With the original PET data unchanged, increasing rainfall of the Blue Nile, El Diem, Kabalega, Malaba, Mpanga, and Ribb by 5% led to an increase in streamflow by 9.02, 9.87, 5.38, 4.34, 6.58, and 8.32%, respectively. The research reveals that the rate at which a catchment losing water to the atmosphere (determined by PET) substantially influences its drying rate. Utilizing linear models, we demonstrate that the surplus rainfall available for increasing streamflow (represented by model intercepts) amplifies with higher rainfall intensities. This highlights the pivotal role of rainfall in shaping catchment water balance dynamics. Moreover, our study stresses the varied sensitivities of catchments within the basin to changes in PET and rainfall. Catchments with lower PET exhibit heightened responsiveness to increasing rainfall, accentuating the influence of evaporative demand on streamflow patterns. Conversely, regions with higher PET rates necessitate refined management strategies due to their increased sensitivity to changes in evaporative demand. Understanding the intricate interplay between rainfall, PET, and streamflow is paramount for developing adaptive strategies amidst climate variability. By examining these relationships, our research contributes essential knowledge for sustainable water resource management practices at both the catchment and regional scales, especially in regions susceptible to varying sensitivities of catchments to climatic conditions.