Browsing by Author "Abedigamba, Oyirwoth P."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Computational Insights for interactions between NsP2 and NsP3 of CHIKV and Hormones through DFT computations and Molecular Dynamics Simulations(Chemistry & Biodiversity, 2024-08-13) Raman, Anirudh Pratap Singh; Kumar, Durgesh; Kumari, Kamlesh; Jain, Pallavi; Bahadur, Indra; Abedigamba, Oyirwoth P.; Preetam, Amreeta; Singh, PrashantThe non-structural protein (nsP2 & nsP3) of the CHIKV is responsible for the transmission of viral infection. The main role of nsp is involved in the transcription process at an early stage of the infection. In this work, authors have studied the impact of nsP2 and nsP3 of CHIKV on hormones present in the human body using a computational approach. The ten hormones of chemical properties such as 4-Androsterone-2,17-dione, aldosterone, androsterone, corticosterone, cortisol, cortisone, estradiol, estrone, progesterone and testosterone were taken as a potency. From the molecular docking, the binding energy of the complexes is estimated, and cortisone was found to be the highest negative binding energy (-6.57 kcal/mol) with the nsP2 protease and corticosterone with the nsP3 protease (-6.47 kcal/mol). This is based on the interactions between hormones and NsP2/NsP3, which are types of noncovalent intermolecular interactions categorized into three types: electrostatic interactions, van der Waals interactions, and hydrogen-bonding. To validate the docking results, molecular dynamics simulations and MM-GBSA methods were performed. The change in enthalpy, entropy, and free energy were calculated using MM-GBSA methods. The nsP2 and nsP3 protease of CHIKV interact strongly with the cortisone and corticosterone with free energy changes of -20.55 & -36.08 kcal/mol, respectively.Item Experimental comparison of erythritol and erythritol-granite pebble mixtures as heat storage materials for solar cooking(Green Technology & Innovation, 2025-02-19) Mawire, Ashmore; Abedigamba, Oyirwoth P.In this article, a comparison is presented between a pure latent heat storage system (erythritol) and a mixed storage system consisting of equal mass ratios of erythritol and granite pebbles (5 – 10 mm) for a solar cooking application. Two small black stainless cooking pots with a capacity of 1 L were placed inside two larger 5 L cooking pots to form simple storage cooking pots. The space between the pots was filled with thermal energy storage (TES) material. In the first configuration, the space between the pots was filled with 2 kg of erythritol. In the second configuration, the storage system consisted of 1 kg of erythritol and 1 kg of granite pebbles in the same space. The first experimental tests involved charging the storage cooking pots without any load for 4 h, followed by discharging them using heating loads in insulated wonder bags to evaluate off-sunshine cooking performance for another 4 h. The second experimental test involved simultaneous cooking and heat storage alternating between charging and discharging cycles. Experimental results showed that the mixed storage system achieved higher temperatures than the erythritol storage system during charging without cooking. During discharging cycles, the heat utilization rate was faster for the mixed storage system than for the erythritol storage system. Both storage systems enabled the cooking of multiple meals within an 8-h cooking period. However, at the end of the experiments, the erythritol storage system retained higher temperatures than the mixed storage system. Future work will focus on characterizing the thermophysical properties of the mixed storage system, optimizing the erythritol-to-granite mixing ratio for improved thermal performance, and investigating alternative, locally available TES materials – such as sandstone, marble, limestone, and xylitol – for potential use in mixed storage systems.