• Login
    View Item 
    •   KYUSpace | Home
    • Faculty of Engineering
    • Department of Civil and Environmental Engineering
    • Journal Articles
    • View Item
    •   KYUSpace | Home
    • Faculty of Engineering
    • Department of Civil and Environmental Engineering
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating false start of the main growing season: a case of Uganda in East Africa

    Thumbnail
    View/Open
    A screenshot of a Research Article Title Web page.pdf (84.06Kb)
    Date
    2021-11-19
    Author
    Ocen, Emmanuel
    de Bie, C.A.J.M.
    Onyutha, Charles
    Metadata
    Show full item record
    Abstract
    False start of the growing season (Fsos) is a component of the onset variability related to agronomic drought that adversely impact on agricultural production and productivity. In the sub-Saharan Africa (SSA) where agriculture heavily depends on rainfall, the Fsos tends to create confusion among farmers on when to start planting crops thereby affecting seed germination and normal growth after emergence. In this paper, we focus on the Fsos and the occurrence of dry spell especially before the Start of growing Season (SoS). We take advantage of the existing rainfall estimates (CHIRPS) and remotely sensed data for vegetation performance (NDVI) over the period 1999–2017 in combination with local knowledge derived from farmers to map out areas at risk of (i) dry spell at the SoS, and (ii) false timing of SoS or high probability of occurrence of the Fsos. We found that the North Eastern part of Uganda (8.8% of arable area) were at risk of dry spell throughout each year. However, the greater North (58.1% of arable area) was prone to dry spell during the onset of the March–May season. Areas in the South Western (3.7%) region were at risk during the onset of the September–November season. The probability that a location in Uganda experiences an Fsos falls between 0-53%. The findings in this study are vital for planning of predictive adaptation to the impacts of climate variability on agriculture amid struggle aimed at tackling food insecurity challenge in the SSA.
    URI
    https://doi.org/10.1016/j.heliyon.2021.e08428
    https://kyuspace.kyu.ac.ug/xmlui/handle/20.500.12504/836
    Collections
    • Journal Articles

    Kyambogo University Copyright © 2015-2023  | University Library | Search Library Catalogue | Contact Us
    KYUSpace Powered By DICTS 
     

     

    Browse

    All of KYUSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Kyambogo University Copyright © 2015-2023  | University Library | Search Library Catalogue | Contact Us
    KYUSpace Powered By DICTS