• Login
    View Item 
    •   KYUSpace | Home
    • Faculty of Engineering
    • Department of Civil and Environmental Engineering
    • Journal Articles
    • View Item
    •   KYUSpace | Home
    • Faculty of Engineering
    • Department of Civil and Environmental Engineering
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impacts of climate variability and changing land use/land cover on River Mpanga flows in Uganda, East Africa

    Thumbnail
    View/Open
    A screenshot of a Research Article Title page.pdf (90.94Kb)
    Date
    2021-12-09
    Author
    Onyutha, Charles
    Turyahabwe, Catherine
    Kaweesa, Paul
    Metadata
    Show full item record
    Abstract
    We analyzed River Mpanga Catchment (RMC) land use/land cover (LULC) types based on Landsat images for 2000, 2008 and 2014. Soil and Water Assessment Tool (SWAT) was driven by daily meteorological data from 2000 to 2011 to investigate impacts of LULC changes on river flow variation. In 2000, 2008, and 2014, cropland covered 33.0%, 69.1%, and 72.2% of RMC area, respectively. However, the fractions of the RMC area covered by grassland in 2000, 2008, and 2014 were 39.4%, 12.5%, and 10.4%, respectively. The portion of RMC area covered by human settlement increased from 0.2% in 2000 to 0.5% by 2014. RMC was characterized by increasing trends in annual rainfall and river flows. SWAT calibration and validation at daily scale over the periods 2000–2005 and 2006–2011 yielded Nash Sutcliffe Efficiency of 0.77 and 0.75, respectively. Contribution from transitions in LULC types to river flow changes over the period 2000–2008 was 7.65%. Generally, 70.46% of the total river flow variation was contributed by climate variability in terms of changes in climatic conditions. However, 21.89% of the total river flow variance remained unexplained and this could be attributed to other factors not considered in this study including extra impacts of human activities such water abstractions for agricultural, industrial and domestic needs. These findings are important for planning predictive land and water resources management amidst impacts of climate variability and human activities on water resources.
    URI
    https://www.sciencedirect.com/science/article/pii/S2667010021002523#!
    https://doi.org/10.1016/j.envc.2021.100273
    https://kyuspace.kyu.ac.ug/xmlui/handle/20.500.12504/827
    Collections
    • Journal Articles

    Kyambogo University Copyright © 2015-2023  | University Library | Search Library Catalogue | Contact Us
    KYUSpace Powered By DICTS 
     

     

    Browse

    All of KYUSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Kyambogo University Copyright © 2015-2023  | University Library | Search Library Catalogue | Contact Us
    KYUSpace Powered By DICTS