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ABSTRACT

Despite the advances in methods of statistical andmathematical modeling, there is considerable lack of focus on improving how to judgemodels’

quality. Coefficient of determination (R2) is arguably the most widely applied ‘goodness-of-fit’metric in modelling and prediction of environmental

systems. However, known issues of R2 are that it: (i) can be low and high for an accurate and imperfect model, respectively; (ii) yields the same

value when we regress observed on modelled series and vice versa; and (iii) does not quantify a model’s bias. A new model skill score E and

revised R-squared (RRS) are presented to combine correlation, bias measure and capacity to capture variability. Differences between E and

RRS lie in the forms of correlation and variability measure used for each metric. Acceptability of E and RRS was demonstrated through comparison

of results from a large number of hydrological simulations. By applying E and RRS, the modeller can diagnostically identify and expose systematic

issues behind model optimizations based on other ‘goodness-of-fits’ such as Nash–Sutcliffe efficiency (NSE) and mean squared error. Unlike NSE,

which varies from �∞ to 1, E and RRS occur over the range 0–1. MATLAB codes for computing E and RRS are provided.

Key words: distance correlation, hydrological models, model performance evaluation, Nash–Sutcliffe efficiency, revised R-squared (RRS),

R-squared

HIGHLIGHTS

• R2 is arguably the most widely applied ‘goodness-of-fit’ measure.

• R2 has known issues e.g. it (i) does not quantify bias, (ii) can be low and high for an accurate and imperfect model, respectively.

• Revised R2 (RRS) and a metric E are presented to address the issues of R2.

• E & RRS allow diagnostic exposure of systematic issues behind model optimizations based on other ‘goodness-of-fits’ such as mean

squared error.
INTRODUCTION

Given the growing concern about the impacts of changing climate on hydrology, several studies have been conducted on model-
ling of hydrological systems. Despite the advances in methods of statistical and mathematical modelling, Alexander et al. (2015)
asserted that there continues to exist substantial inattentiveness to improving ways to judge the quality of models. Here, the word
quality is analogous to how well a model fits through points of measurements or observations and this can be described as ‘good-
ness-of-fit’. In Table 1 of the paper by Blöschl et al. (2019), issues 19 and 20 of the 23 unsolved problems in hydrology concern
modelling methods. These issues are regarding the adaptation of hydrological models for making extrapolations, and the need

for disentangling and reducing model uncertainty in hydrological prediction. It is intuitive that the acceptability of a model’s pre-
dictability is synonymous with the model’s performance or quality. In this way, there are a large number of recent studies which
have focused onmetrics for assessingmodel performance and examples of the relevant papers includeBai et al. (2021), Clark et al.
(2021), Stoffel et al. (2021), Ye et al. (2021), Lamontagne et al. (2020), Liu (2020), Barber et al. (2019), Jackson et al. (2019),
Mizukami et al. (2019), Rose&McGuire (2019), Pool et al. (2018), Lin et al. (2017) and Jie et al. (2016). Due to efforts to improve
how to judgemodel performance, several ‘goodness-of-fit’metrics exist in the literature.However, Jackson et al. (2019) suspect that
somemeasures of ‘goodness-of-fits’ are mostly preferred to others because of familiarity, without focus on the strengths and weak-
ness of themetrics. In fact, amodeller is required to have comprehensive knowledge of the strengths and limitations of a particular
‘goodness-of-fit’ metric before using it to calibrate a hydrological model (Mizukami et al. 2019; Ferreira et al. 2020).
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Lamontagne et al. (2020) noted that, nowadays, the most widely used ‘goodness-of-fits’ for assessing model performance in

hydrology include the Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe 1970) and the Kling–Gupta efficiency (Gupta et al.
2009). However, the coefficient of determination (hereinafter denoted as R2 or interchangeably used with R-squared) was
known perhaps to be solely the most extensively applied measure of ‘goodness-of-fit’ (Kvålseth 1985) and this still holds

true until the time of writing this paper, especially when we consider the application of R2 in hydrological, ecological, agri-
cultural and climatic categories of the environmental systems.

Specifically in hydrology, R2 is regarded as a standard metric for the evaluation of the ‘goodness-of-fit’ between model simu-
lations and observations (Barber et al. 2019). A high value of R2 tends to be associated with an effective model (Quinino et al.
2013). A model performance for which R2 is zero is intuitively poor. On an important note, there are strong statements in the lit-
erature about the use of R2 for model performance evaluation. For instance, it was remarked that ‘the most important aspect of R2

is that it has no importance in the classical model of regression’ (Goldberg 1991). Furthermore, Cameron (1993) warned that R2 is

not a statistical test, and there seems to be no intuitive justification for its use as a descriptive statistic. This suggests that the value of
R2 should not even be reported (Quinino et al. 2013) for modelling studies. Correlation from which we obtain R2 is unsuited for
analyses of agreement between observations and model simulations (Schober et al. 2018). Furthermore, there are a number of

commonmisunderstandings surrounding the use of R2 as a measure of model fit, thereby making the application and interpretation
of R2 significantly confusing (Alexander et al. 2015). The use of R2 may not be ‘morally ethical’ in some contexts (Rose &McGuire
2019). There are quite a number of reasons which render predictive power of R2 to be inadequate. First of all, R2 can be low for an

accurate model and, on the other hand, an inaccurate model can yield high R2. Second, we obtain the same value of R2 by regres-
sing observed (X) and modelled (Y) series and vice versa. This invalidates the use of R2 as the coefficient of determination to
indicate the amount of the total variance in observations explained by the model. Third, R2 does not quantify bias in a model.
Although R2 is commonly used, its values do not change with respect to magnitude scale change (Jackson et al. 2019). It is
also known that R2 is sensitive to outliers in the sample (Barber et al. 2019). The conventional R2 provides invalid results in
the presence of measurement errors in the data (Cheng et al. 2014). Despite these issues regarding the use of R2, there are
many recent studies which can be found to have applied R2 for the evaluation of model performance. The metric R2 (along

with gradient and intercept of the corresponding regression line) was recommended by Moriasi et al. (2015) as one of the ‘good-
ness-of-fit’ metrics for evaluating model performance. In fact, some scientists even advocate for the preference of R2 to other
‘goodness-of-fit’ measures of model performance (see, e.g., Chicco et al. 2021). Nevertheless, R2 should not be used for model per-

formance evaluation despite its wide use and recommendation by some scientists (Jenkins & Quintana-Ascencio 2020). The need
to introduce a ‘goodness-of-fit’metric which addresses a number of (if not all the) issues of R2 comprises the rationale of this study.

It is worth noting that R2 has several variants used to measure ‘goodness-of-fits’. At least nine R2 versions can be found ela-
borated by Kvålseth (1985). Four most common versions of R2 include: (i) Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe

1970), (ii) sum of squared deviations of modelled data points from their mean divided by the sum of squared deviations of
observed data points from their mean, (iii) fraction of the variance in observed data explained by the model, and
(iv) squared Pearson product moment correlation coefficient. The R2 formula given by Equation (3) in a paper by Nash &

Sutcliffe (1970) can be compared with the R2 or Equation (1) of Kvålseth (1985). In summary, R2 versions (i)–(iv) above can
be found given by Kvålseth (1985) as R2

1, R
2
2, R

2
4 and R2

6 in Equations (1), (2), (4) and (6), respectively. For an ideal model
(where the bias is zero), R2 versions (i) and (iii) are identical to each other. Furthermore, R2

4 is very close to NSE for any reason-

able model (with small bias). However, R2
4 will always be larger than NSE if the bias is greater than zero. While there is the

growing use of R2
6 or the most well-known version of R2 for assessing model performance in hydrology despite the past warnings

by some scientists such as Goldberg (1991) and Cameron (1993), many researchers when referring to R2 (or the coefficient of

determination) can actually be found using NSE. However, it is important to note that R2
6 and NSE are different (Bardsley

2013). For instance, when we swapX and Y series, R2
6 remains unchanged, something which is not the case for NSE. Generally,

the best form of R-squared appears to be what modellers (especially hydrologists) refer to as the NSE (Kvålseth 1985). Even-
tually, NSE has been favoured for assessing ‘goodness-of-fits’ especially in hydrology. However, R2

6 or R2 is so widely used

not only in hydrology but also for modelling and prediction of other environmental systems including ecological, agricultural
and climatic fields. The formula for NSE is given by (Nash & Sutcliffe 1970):

NSE ¼ 1�
P

(X� Y)2P
(X� �X)

2 (1)
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where �X is the mean of theXs and all summations are from i¼ 1 to i¼ sample size (n) while the subscript iwas omitted to simplify

the notation, and this style can be found adopted and hereinafter consistently used throughout the paper to avoid any ambiguities.
NSE has a number of issues despite its popularity and wide usage in hydrological modelling. This is why the suitability of NSE

has been on the modellers’ radar for decades, as this can be seen, for instance, in Garrick et al. (1978), Kvålseth (1985), Legates &

McCabe (1999, 2013), Krause et al. (2005), Gupta et al. (2009), Liu (2020) and Clark et al. (2021). Eventually, there are several
variants of NSE based on its modifications to address issues related to the use of the original version proposed by Nash & Sutcliffe
(1970). For instance, a modification of NSE or R2 in terms of R2

9 (see Equation (11) from the paper by Kvålseth (1985)), comprised
mediansM of absolute values of residuals and magnitudes of deviations of the Xs from �X. This R2

9, which Kvålseth (1985) termed

as resistant R2 statistic (hereinafter denoted as RSS), was to be taken as a measure of the proportion of the total variability of X
explained (accounted for) by the fitted model and can be computed using RSS ¼ 1� (M(jX� Y j)=M(jX� �Xj))2. Noticeably, RSS
can be far lower than zero, especially whenM(jX� Y j) .. M(jX� �Xj). Another improvement of NSE was by Legates &McCabe

(1999), in terms of the ratio of the sum of absolute (instead of squared) differences betweenX and Y divided by the sum of absolute
(and again not the squared) deviations of the Xs from �X. Furthermore, to overcome the oversensitivity of NSE to peak high values
stemming from the influence of squaring the error term, logarithmic NSE is also sometimes used (Krause et al. 2005). Despite

these improvements for NSE, the original version by Nash & Sutcliffe (1970) continues to be more applicable than its variants.
The popularity of the original NSE version could be due to its simplicity compared with the variants. Nevertheless, NSE values
occur over a wider range (from�∞ to positive 1) than the expected typical relative error measure with standard values of zero and

one characterizing imperfect and perfect model, respectively. Additionally, NSE directly relies on �X as the comparison baseline
and in this way it can lead to overestimation of model skill when modelling highly seasonal river flow, for instance, from runoff in
snowmelt-dominated basins (Gupta et al. 2009). Moreover, the probability distribution of squared errors between model simu-
lations and observations has heavy tails, thereby making the sampling uncertainty in NSE estimator substantial (Clark et al. 2021).

In a relevant development regarding hydrological modelling, performance evaluation has been based on multiple criteria.
However, the use of several criteria in a single calibration complicates the application and automation of well-known search
algorithms, including generic algorithm and uniform random search as well as many others. Alternatively, the various criteria

can be combined into a single ‘goodness-of-fit’ metric. To do so, it is vital to analyse the similarities and differences between
the various criteria before their possible combination. The idea here is that criteria which are not mathematically related
could be combined. In this way, we minimize redundancy of related criteria during model calibration.

Therefore, the purpose of this study was to revisit R-squared and also introduce a model skill score in line with the need to
have a metric which can address the known issues of R-squared. Here, the rationale for introducing a new model performance
metric is to characterize model performance in terms of measures which can enhance the modeller’s understanding of the
issues behind poor model performance. To allow a modeller to diagnostically identify and expose systematic issues behind

unrealistic model outputs, the new metric comprises components that can be used to determine the criteria to which the
poor or bad model performance should be attributed. The remaining parts of this paper are organized as follows. The section
of materials and methods contains an overview of the previous decompositions of NSE, derivation of the hydrological model

skill score and the new formula after revisiting the R-squared. This section also consists of the application of the new model
skill score for a case study as well as comparison with other ‘goodness-of-fit’measures. The next section comprises results and
discussion of the case study. Finally, conclusions are drawn in the final section before the list of references.
MATERIALS AND METHODS

Previous decompositions of NSE

From Equation (1), it can be noted that the numerator and denominator of the second part of the NSE are related to the mean
squared error (MSE) and sample variance of X (or s2X), respectively, such that NSE ¼ 1� (MSE=s2X). Previously, there have
been a few studies (Yates 1982; Murphy 1988; Gupta et al. 2009) which comprised decompositions of MSE or NSE. Consider

s2Y as the sample variance of Y while �Y denotes the mean of the Ys. Furthermore, let sYX be the sample covariance of X and Y.
MSE can be decomposed using MSE ¼ (�Y � �X)2 þ s2Y þ s2X � 2sYX (Yates 1982). In Murphy (1988), NSE was decomposed
into three components, such that NSE ¼ r2 � (r2 � sY � (sX)

�1)2 � ((�Y � �X)� (sX)
�1)2 where r is the coefficient of Pearson

correlation between X and Y while sX and sY represent the sample standard deviation of X and Y, respectively. The first,
second and third parts of the decomposed NSE quantify correlation strength, conditional bias and unconditional bias,
respectively (Murphy 1988).
://iwaponline.com/hr/article-pdf/53/1/51/995215/nh0530051.pdf
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An alternative decomposition of NSE was in terms of Kling–Gupta efficiency (KGE) (Gupta et al. 2009), such that:

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2 � 1)2 þ sY

sX
� 1

� �2

þ
�Y
�X
� 1

� �2
s

(2)

KGE is implicitly based on the assumptions of data normality and the absence of outliers (Pool et al. 2018). While max-

imizing KGE, values (the means of simulation) that underestimate �X, especially in the high flows will tend to be
favourably selected (Liu 2020). Generally, previous decompositions of NSE (Murphy 1988; Gupta et al. 2009), like NSE, con-
tinue to yield a wide range of values from negative infinity to zero. This makes interpretative judgement of the model
performance not straightforward. For instance, it was increasingly believed in hydrological modelling studies that model per-

formance with positive (negative) values of KGE would be taken as good (bad). However, Knoben et al. (2019) recently
showed that the direct use of mean flow benchmark by KGE indicates that, actually, a model’s improvement starts from
KGE equal to �0.41 even if the KGE values are still negative. Eventually, modellers were cautioned not to let their under-

standing of the ordinary NSE (Equation (1)) guide them in the interpretation of KGE (Equation (2)) (see details in
Knoben et al. 2019). Furthermore, sampling uncertainty in the KGE estimator is substantial due to the heavy tails of the prob-
ability distribution of squared errors between model simulations and observations (Clark et al. 2021).

Another problem with metrics coined from previous decompositions of NSE (Murphy 1988; Gupta et al. 2009; Liu 2020) is
that they assume linearity of the relationship between X and Y and this makes them rely on r. It is worth noting that X and Y
may be highly dependent yet their dependence cannot be detected by a classical dependence measure (Székely et al. 2007;
Chaudhuri & Hu 2019).

Preamble to the new model skill score

Suppose we want to fit a straight line to n pairs of X and Y, the equation that can be used is Y ¼ aþ bX where a is the inter-

cept term and b denotes the least squares linear regression slope. Estimates of a and b, respectively denoted as â and b̂ to
minimize the function

P
(Y � (aþ bX)) so as to guarantee the ‘best fit’ of the regression line, can be given by

b̂ ¼ r(sY=sX) and â ¼ �Y � b̂�X. Substituting these notations â and b̂ into Y ¼ aþ bX yields an equation for the fitted Y (or

Ŷ) such that Ŷ ¼ âþ b̂X. We can substitute expression for â in Ŷ and this leads to b̂ ¼ (Ŷ � �Y)� (X� �X)�1 and equating
expressions for b̂ from b̂ ¼ r(sY=sX) and b̂ ¼ (Ŷ � �Y)� (X� �X)�1 yields

r ¼ (Ŷ � �Y)
(X� �X)

� sX
sY

(3)

When we are dealing with standardized series, Equation (3) shows that r plays an important role in the regression line. Thus,
so long as the appropriate model for the standardized data points is the regression line and jrj , 1, we find the fitted Y closer

to its mean than X is to its mean. This phenomenon is referred to as regression toward the mean. Furthermore, for non-para-
metrically transformed series, the term r equals the linear regression slope (Onyutha 2020).

When the term a exists in a linear regression model, R2, which can be expressed as the ratio of the explained sum of squares
to total sum of squares, is actually equal to r2 (see, e.g., Greene 1997: p. 253) such that r ¼ sXY � (sX � sY )

�1 and R2 ¼ r � r.
We can represent the second r in R2 ¼ r � r using the expression in Equation (3) such that:

R2 ¼ r � sX
sY

� �
� Ŷ � �Y

X� �X

 !
(4)

Just like for previous decomposed components of NSE as seen for instance in Equation (2), it is conspicuous that the key or

common terms of R2 from Equation (4) include r, sX, sY , �X and �Y . Furthermore, what is clear is how different these terms are
arranged or combined for NSE (Equation (2)) and R2 (Equation (4)). The difference comes about because the decomposition
of NSE is via the ratio of MSE to sX while that of R2 is based on the ratio of s2XY to (sX � sY ). In both NSE (Equation (2)) and

R2 (Equation (4)), the term r quantifies strength of linear relationship between X and Y. In Equation (4), the ratio of sX to sY
compares variability in X and Y. The last part of Equation (4) or the ratio of (Ŷ � �Y) to (X� �X) compares deviations of X and
points on the regression line from �X and �Y , respectively.
om http://iwaponline.com/hr/article-pdf/53/1/51/995215/nh0530051.pdf
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The new model metric, E

In this paper, the new model metric E (which for lack of an appropriate name can simply be referred to as Onyutha efficiency)
is derived based on an analogy to the R2 in Equation (4). Furthermore, E carefully considers key terms r, sX, sY , �X and �Y as

obtained for NSE (Equation (2)) and R2 (Equation (4)). The combination of these terms r, sX, sY , �X and �Y in the formulation
of E is done in a way to ensure that E varies from zero to one while addressing existing issues of R2 as highlighted in the
introduction section. This is also done while taking into account the fact that an assumption of linearity of X and Y or the
use of a classical dependence measure r as in NSE (Equation (2)) and R2 (Equation (4)) can be violated in the case of a non-

linear relationship between X and Y. Thus, instead of r as the first term of E, we use distance correlation (rd) between X and Y
(Székely et al. 2007), such that, rd ¼ 0 if dXX � dYY ¼ 0, otherwise

rd ¼ dXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXX � dYY

p (5)

where, for instance, dXY denotes distance covariance of X and Y. When values of rd are zero and one, it means X and Y are
uncorrelated and perfectly correlated, respectively. Thus, rd values of zero and one indicate poor and good model perform-

ance, respectively, with respect to correlation betweenX and Y. Actually, it should be pointed out that when (i) X and Y are of
large n, and/or (ii) there is a large number of model simulations, the arduous computational demand in obtaining the value of
rd, especially through the use of sample distance covariance based on modified Euclidean distances, as suggested by Székely

et al. (2007), can pose a crucial limitation for use of rd in E. Fortunately, this limitation was substantially addressed by
Chaudhuri & Hu (2019) through a fast algorithm for computing rd. Thus, the recommended algorithm for computing rd
for use in E should be the one which is computationally not slower than that of Chaudhuri & Hu (2019).

The second component A of the metric E is to assess performance of the model with respect to variability of observations.
The values of A are expected to vary from zero to one to indicate poor and good model performance, respectively. In the
direct use of the ratio of sX to sY as in Equation (4), the term A could be greater than one especially when sY is less than

sX. To ensure that the maximum value of the component A is one, we instead make use of the ratio of min(sX, sY ) to
max(sX, sY ) where min and max denote the minimum and maximum, respectively, of any two values. This will shortly be
seen important for obtaining a revised R-squared equation. For the new metric E, we can use covariance instead of standard
deviation. This is in line with the fact that sample variance is basically the covariance of a variable with itself. Furthermore,

since in some cases, the data may be non-normally distributed, the computation of A in terms of dXX and dYY becomes rel-
evant for obtaining E given that we are also using rd instead of r as the first term of E. Therefore, A ¼ 0 if dXX ¼ 0 and dYY ¼ 0,
otherwise

A ¼ min(dXX, dYY )
max(dXX, dYY )

(6)

It makes intuitive sense that we do not need a model for prediction of X when dXX ¼ 0. Importantly, there can exist a case

when the difference between �X and �Y (or unconditional bias) is large, indicating poor model performance, while we have an
ideal performance in terms of rd ¼ 1 and A ¼ 1. Thus, there is a need for the third term B to quantify model bias. To do so, we
can realize that R2 lacks capacity to quantify bias because it considers deviations of Ŷ and X from �Y and �X, respectively, and
not a common baseline. Thus, for E we compare the squared deviations of both X and Y from a common baseline �X. The

deviations are squared to avoid negative and positive resulting values cancelling out. Thus, the term B to quantify deviations
of X and Y from a common baseline (or mean of X) can be given by B ¼ 0 if

P
(X� �X)

2 ¼ 0 and
P

(Y � �X)
2 ¼ 0, otherwise

B ¼
min

P
(X� �X)

2
,
P

(Y � �X)
2

� �
max

P
(X� �X)

2
,
P

(Y � �X)
2

� � ¼ min S2X,S
2
YD

� �
max S2X,S

2
YD

� � (7)

where S2X is the sample variance of X and S2YD denotes the conditional variance of Y with respect to �X such that
S2YD ¼ ðn� 1Þ�1P (Y � �X)

2
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Finally, the metric E can be given by

E ¼ rd �A� B (8)

In other words, to compute the metric E we consider rd combined with two measures of variability of X compared with that

of Y. These two measures of variability are in terms of the metrics A and B. One measure of variability is unconstrained and
the other constrained. Unconstrained variability (or the term A) is obtained when we make use of standard deviations of X
and Y. However, constrained variability (or the term B) is when we consider the deviations of X and Y from the mean of X as

a common baseline. For bias, we make use of the difference between the average of X and that of Y. When we talk about
variance and bias, there can exist a number of cases to consider including (i) high variance and large bias, (ii) high variance
and small bias, (iii) low variance and large bias, and (iv) low variance and small bias. In cases (i) and (ii), we may be dealing
with underfitting and overfitting, respectively. To ensure a balance between bias and variance during calibration based on

objective function being introduced, the variances of both X and Y series are constrained to the mean of X (as a common
baseline), and thus the term B. Finally, E is zero in any of the cases where rd ¼ 0, A ¼ 0, or B ¼ 0, otherwise the general for-
mula of E is

E ¼ rd � min(dXX, dYY )
max(dXX, dYY )

� min S2X,S
2
YD

� �
max S2X,S

2
YD

� � (9)

Values of E in Equation (9) vary from zero to one indicating poor and ideal model performance, respectively. What should

not escape quick notice is that by replacing rd, dXX, and dYY of Equation (9) with absolute values of r, sX, and sY , respectively,
we obtain the revised R2 version (which can be denoted as RR2 and can be used interchangeably with RRS) whose value is
taken as zero when sX ¼ 0 and (sX � sY ) ¼ 0, otherwise

RRS ¼ jrj � min(sX, sY )
max(sX, sY )

� min S2X,S
2
YD

� �
max S2X,S

2
YD

� � (10)

Whereas RSS or RR2 is simpler to apply than E and assumes linearity between X and Y, this study focused on application of
E for brevity. A summary of the components of the metrics RRS and E can be seen in Figure 1. The MATLAB-based codes for

computing RRS and E can be found in the Supplementary Material, Appendices A–C.
The advantages of the metric E are that it (i) allows a modeller to judge the performance of the model with respect to three

measures (bias, correlation and variability), (ii) occurs over the range 0–1 and not like NSE which varies from negative infinity

to one, (iii) addresses a number of the issues of the well-known R2 and (iv) does not comprise direct squaring of model errors,
something which increases the sensitivity of some metrics like NSE. These advantages also hold for the metric RRS. The main
disadvantage of the metric E is that it may require automation through computer programs (like the MATLAB codes provided

in Supplementary Material, Appendices A–C of this paper). Computation of the metric RRS is fast and does not necessarily
require automation since it can be easily implemented, for instance in Ms Excel. The main disadvantage of RRS is that it
has a component which works on the assumption that the relationship between the two given variables is linear.
Figure 1 | Components of metrics RRS and E.
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CASE STUDY

Data and selected models

It is a common practice to compare a new method with existing ones in hydrology. In this study, two catchments were

selected from different climatic regions. The first catchment was of the upper Blue Nile flow observed at El Diem in Ethiopia,
Africa. The catchment area of the upper Blue Nile catchment was 176,000 km2. Quality controlled daily hydro-meteorologi-
cal data comprising potential evapotranspiration (PET) and rainfall for the upper Blue Nile covering the period 1980–2000

were adopted from a previous study (Onyutha 2016). The second catchment was for the Jardine River found in North Queens-
land, Australia. Hydro-meteorological datasets including daily catchment runoff, catchment-wide rainfall and
evapotranspiration over the Jardine River catchment were obtained from the website of ‘eWater toolkit’ via https://toolkit.

ewater.org.au/ (September 9, 2020). The stream flow data were for gauging station no. 927001 with a catchment area of
2,500 km2. The adopted daily PET, river flow and rainfall covering the period 1974�1989 can be found in a folder named
‘Data’ under Rainfall Runoff Library (RRL). To download and install RRL, one needs to first register via https://toolkit.

ewater.org.au/member/CreateUser.aspx (June 9, 2020).
Two hydrological models were selected to be applied to the selected catchments. These models included Nedbør-Afstrømn-

ings-Model (NAM) (Nielsen & Hansen 1973) and the Hydrological Model focusing on Sub-flows’ Variation (HMSV)
(Onyutha 2019). These models were adopted for illustration because of their lumped conceptual frameworks or structures

which are compatible with the adopted catchment-wide averaged PET and rainfall. Daily PET and rainfall series were
used as model inputs. The output of each model was the modelled flow and this was compared with the observed discharge.

Comparison of the new efficiency E with other ‘goodness-of-fit’ metrics

For calibration of HMSV and NAM, the strategy for automatically changing model parameters was based on the generalized
likelihood uncertainty estimation (GLUE) framework of Beven & Binley (1992). As a Bayesian approach, GLUE requires

several sets of model parameters which were randomized within stipulated limits. For each set of parameters, an objective
function was selected and used to perform 10,000 sets of simulations by HMSV or NAM. The objective functions included
the NSE, RSS, KGE, E, index of agreement (IOA) (Willmott 1981) and Taylor skill score (TSS) (Taylor 2001). IoA and TSS
were computed using

IOA ¼ 1�
P

(X� Y)2P
(jX� �Xj þ jY � �Xj)2

(11)

TSS ¼ 4(1þ Rd)

(ŝY þ 1=ŝY )
2(1þ R0)

(12)

where ŝY is the normalized sY and R0 denotes the maximum correlation attainable based on another term Rd such that

Rd ¼ n�1 �P (X� �X)(Y � �Y)� (sXsY )
�1. To determine R0 to be used in Equation (12), NAM and HMSV were each simu-

lated 6,000 times using GLUE strategy. During each simulation run, Rd was computed. The maximum of the 12,000 Rd

values (6,000 from each model) was taken as R0.

Using each of the objective functions (including NSE, RSS, E, IOA, KGE, and TSS), both HMSV and NAMwere calibrated
based on the GLUE strategy. There was a total of 10,000 calibration runs with each objective function. During calibration
using a particular objective function, values for other objective functions were also calculated. In other words, at the end

of the calibration, each of the objective functions including NSE, RSS, E, IOA, KGE and TSS had 10,000 values. Values
of one objective function were plotted against those for other metrics. The optimal parameters were those in the set
which yielded the best (or highest) value of the objective functions used in this study. Modelled runoff series obtained

based on the objective functions (NSE, KGE, E, TSS, IOA and RRS) were also graphically compared. Furthermore compari-
son was made on (i) R-squared and RRS, (ii) r and rd, as well as (iii) RRS and E.

RESULTS AND DISCUSSION

Comparison of E, revised R-squared, Pearson correlation and distance correlation

Figure 2 shows comparison of the various relevant ‘goodness-of-fit’metrics. The scatter points in the plots of r versus rd do not
fall along the bisector or diagonal dashed line (Figure 2(a) and 2(b)). Values of r were mostly greater than those of rd. Thus,
://iwaponline.com/hr/article-pdf/53/1/51/995215/nh0530051.pdf
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when the relationship between X and Y is not linear, the use of r becomes inadequate in evaluating the model’s ‘goodness-of-

fit’. Values of the original R2 can be seen to be greater than the revised one, RR2, for almost all the cases (Figure 2(c) and 2(d)).
The original R2 yields values close to its maximum even when there are large mismatches between X and Y. Results shown in
Figure 2(c) and 2(d) indicate that RR2 is far better than R2 in evaluating model performance or assessing predictive power of a

model. This is because RR2 combines measures of bias, variability and correlation. Nevertheless, the scatter points in the plots
of RR2 versus E fall mostly below the bisector. Thus, RR2 yields values which, in most cases, are greater than the new metric
E. The differences between E and RR2, as reflected in Figure 2(e) and 2(f), are because (i) E uses dXX and dYY while RR2

makes use of sX and sY , and (ii) E comprises rd while RR2 applies r. The difference between E and RR2 shows the limitation
of the assumption of linear relationships between X and Y while evaluating model performance. Conclusively, the use of RR2

should be after confirming the linearity of the relationship between X and Y. This could be, for instance, through a simple

scatter plot of X versus Y :

Values of E components based on calibrations of HMSV and NAM

Figure 3 shows results of model performance with respect to variability (A), bias (B) and distance correlation (rd). It can be
noted that rd was, in most cases, greater than values of both A and B. Four points P, Q, R and S are marked on Figure 3 for
om http://iwaponline.com/hr/article-pdf/53/1/51/995215/nh0530051.pdf
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Figure 3 | Comparison of model performance in terms of the various components of E.
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illustration to highlight what a modeller misses out by using other ‘goodness-of-fit’ metrics such as NSE, IOA, TSS and RSS.
Values at point P show that the model performance was fair with respect to bias (B¼ 0.6852) but poor regarding both varia-
bility (A¼ 0.0017) and distance correlation (rd¼ 0.2946). At point R, the model is good in performance with respect to only
(rd¼ 0.9285). At point Q, the model performed better regarding variability (A¼ 0.8630) and bias (B¼ 0.9754) than distance

correlation (rd¼ 0.6762). The best model performance for the selected illustrative points was at S with E equal to 0.7320. Even
at point S, the model performed slightly better with respect to bias (B¼ 0.9013) and distance correlation (rd¼ 0.9062) than
variability (A¼ 0.8962).

The illustrations in Figure 3 show that a model’s performance can be poor because of its (i) large bias, (ii) limited capacity to
reproduce variability in observed data, or (iii) reduced capability to generate outputs which can resonate well with observed
data. Given these known reasons, a modeller can focus accordingly on which parameter is relevant for adjustments to improve

the model performance during calibration. To do so, one needs to have an expert judgement of the system under consideration.
For instance, if we are dealing with a hydrological system, one reason why a model can largely be biased is reduced model
capacity due to flawed modelling concepts that are unable to capture impacts of human activities on hydrology. To exemplify

this, we need to think about a river whose flow is abstracted at various locations along its channel length for irrigation, indus-
trial use and water supply to towns or cities. In another case, there can be some return flows into the river, for instance, in the
form of treated industrial effluents, and discharge from an irrigation field. In such cases, the recorded discharge in the river can
be different from the actual one. Eventually, there can exist a systematic difference between the simulated and measured river

flows. Some models (like HMSV) give provisions to take into account possible flow returns or abstractions from a catchment.
Specifically, the HMSV caters for flow returns or abstractions using a value (with the unit as of flow being modelled) that needs
to be entered by the modeller. In case the model performs poorly with respect to variability or distance correlation, some
://iwaponline.com/hr/article-pdf/53/1/51/995215/nh0530051.pdf
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parameters to be adjusted are those which take care of recession of overland flow, inter flow and base flow. Such parameters,

for instance, in NAM include time constant for interflow (CKIF, day), time constant for base flow (CKBF, day), overland flow
runoff coefficient (CQOF). In the same line, HMSV makes use of base flow recession constant (t1, day), interflow recession con-
stant (tb, day) and overland flow recession constant (tu, day) to control variability in flow.

Comparing the new metric E with other objective functions

Figure 4 shows comparison of various objective functions (NSE, RSS, E, IOA, KGE and TSS). For negative values of NSE,
KGE and RSS, E is zero or nearly so (Figure 4(a)–4(c)). When E is zero, TSS and IOA can attain values as high as 0.6 and 0.7,
Figure 4 | Plots of (a)–(e) E against NSE, KGE, RSS and TSS; (b)–(i) NSE versus KGE, RSS, IOA and TSS; (j)–(l) KGE against RSS, IOA and TSS; (m)
and (n) RSS versus IOA and TSS; and (o) IOA versus TSS.

om http://iwaponline.com/hr/article-pdf/53/1/51/995215/nh0530051.pdf
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respectively (Figure 4(d) and 4(e)). It can be noted that RSS, IOA and TSS increase more rapidly towards the maximum value

of one than E (Figure 4(c) and 4(e)). NSE was shown to be more negative than KGE, especially for values less than zero
(Figure 4(f)). KGE is a variant of NSE and this is why scatter points in the plot of KGE versus NSE depict a polynomial
(like nearly linear) relationship (Figure 4(f)). Eventually, the relationship between NSE and IOA is comparable with that

of KGE and IOA (Figure 4(h) and 4(k)). Similarly, scatter points in the plots of NSE versus TSS (Figure 4(i)) are to a
large extent comparable with that of KGE versus TSS (Figure 4(l)). Furthermore, RSS versus NSE (Figure 4(g)) is also com-
parable with that of RSS against KGE (Figure 4(j)). For very low (even negative) NSE, KGE and RSS, both IOA and TSS
yielded large values (Figure 4(g)–4(i), 4(k)–4(n)). IOA has a major drawback of giving high values (close to 1) even for a

poorly fitted model (Krause et al. 2005). To address the problems related to the use of IOA, Willmott et al. (2012) reformu-
lated the IOA with respect to the bounds of the values. In a relevant development, Legates & McCabe (2013) remarked that
the refinement made by Willmott et al. (2012) to extend the bound of the original IOA such that it starts from �1 to 0 was

unnecessary. Other limitations of the refined IOA can be found elaborately given by Legates & McCabe (2013). Generally,
IOA is more comparable with TSS than other metrics (Figure 4(o)). In other words, scatter points of TSS and IOA are nearly
Figure 5 | Observed versus modelled flow based on HMSV and NAM applied to (a)–(f) El Diem and (g)–(l) Jardine catchments.
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linear (Figure 4(o)). This explains why plots of E versus IOA (Figure 4(d)) are comparable with that of E versus TSS

(Figure 4(e)). Results in Figure 4(d) generally show the acceptability of the new metric E in comparison with other existing
‘goodness-of-fit’ measures.

Figure 5 shows plots of observed and modelled flows obtained based on various objective functions. Generally, results from

the HMSV agree with those of NAM. However, because HMSV and NAM have different structures and parameters, some
slight differences between results of the two models can be seen in terms of the spread of scatter points around the bisector.
The idea behind comparisons in Figure 5 was not to show which objective function leads to the best model outputs but to
show the comparability of the results. For an ideal model, the scatter points would fall along the dashed diagonal line

(also called the bisector). The spread of the scatter points around the bisector indicates model errors. For all the models
and objective functions, some extreme events were overestimated or underestimated. Results for the various objective func-
tions are comparable as expected when the models were applied to both El Diem and Jardine catchments (Figure 5(a)–5(l)).

This shows the acceptability of the new metric E as an objective function for calibrating models.
CONCLUSIONS

Coefficient of determination (R2) is arguably the most widely applied ‘goodness-of-fit’ measure in modelling or prediction of
hydrological, ecological, agricultural and climatic categories of the environmental systems. However, there are a number of
issues which are well-known in the application of R2 including the fact that it: (i) does not quantify model bias; (ii) can be low
for an accurate model; (iii) can be high for an imperfect model; and (iv) yields the same value when we regress observed (X)

and modelled (Y) and vice versa. In fact, issue (iv) invalidates the use of R2 as the coefficient of determination to indicate the
amount of the total variance in observations explained by the model. Another commonly applied version of R2 or the well-
known Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe 1970) is also known to have the problems of varying from negative

infinity to one, and being oversensitive to extreme or large values stemming from the influence of squaring the error term.
Another commonly used metric, KGE, also varies from negative infinity to one like the NSE. A model’s improvement
starts from KGE equal to �0.41 even if the KGE values are still negative, and eventually modellers were cautioned not to

let their understanding of the ordinary NSE guide them in the interpretation of KGE values (Knoben et al. 2019). Further-
more, both NSE and KGE were shown to have substantial sampling uncertainties due to the heavy tails of the probability
distribution of squared errors between model simulations and observations (Clark et al. 2021). Nevertheless, attempts to

address the issues of R2 were central to this study. Eventually, this paper (i) revisited R2 to become RR2 (or RRS) and (ii)
introduced a new model skill score also called Onyutha Efficiency E. Both E and RRS make use of correlation, model per-
formance with respect to variability (A) and bias (B). The differences between E and RRS lie in the forms of correlation and
the term A used for each metric. The RRS is a product of (i) Pearson’s correlation, (ii) a measure which compares standard

deviations of X and Y and (iii) the term B. For the metric E, the term A considers distance covariances of X and Y. Results of
simulations demonstrated superiority of the RRS over the original version of R-squared. By applying the metric E and RRS,
the modeller can diagnostically identify and expose the systematic issues behind model optimizations based on other ‘good-

ness-of-fit’ measures such as NSE, R2 and mean squared error.
To apply E and RR2, the reader can find MATLAB codes provided in Supplementary Material, Appendices A–C, as well as

via https://www.researchgate.net/publication/356420464 and https://sites.google.com/site/conyutha/tools-to-download

(accessed: 11/21/2021).
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