FACULTY OF ENGINEERING

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

A comparative analysis of foundations using prescriptive design and static loading test methods

(CASE STUDY: THE KARUMA INTERCONNECTION POWER PROJECT IN UGANDA)

BY

ACIDRI SAMUEL

(BEng. Civil and Building Engineering- Kyambogo University)
17/U/14270/GMES/PE

A dissertation submitted to the Kyambogo University Graduate School in partial fulfilment of the requirements for the award of Masters of Science degree in Structural Engineering.

CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance by Kyambogo University, a dissertation entitled: "A comparative analysis of foundations using prescriptive design and static loading test methods", by Acidri Samuel, in partial fulfilment of the requirements for the award of a degree of Master of Science in Structural Engineering of Kyambogo University.

Dr. Eng. MUGUME BANGI RODGERS

(RESEARCH SUPERVISOR)
KYAMBOGO UNIVERSITY

Date: 12/11/2020

Dr. MICHAEL KYAKULA
 (RESEARCH SUPERVISOR) KYAMBOGO UNIVERSITY

Date: \qquad

DECLARATION

I, Acidri Samuel, hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree of the university or other institute of higher learning, except where due acknowledgement has been made in the text and reference list.

Signed.
\qquad

ACIDRI SAMUEL
MSc. Structural Engineering
Kyambogo University, Kampala (Uganda)
17/U/14270/GMES/PE

Date: \qquad

ACKNOWLEDGEMENTS

The development of this research involved a great number of individuals and organisations; I have tried briefly to list as many as possible, and I must apologise for any inadvertent omissions of those who have helped in the past and present.

Work of this nature is impossible without moral and financial help, and the fact that this research was completed in the way it has been, is due to the many friends that have given magnificent contributions to its success. I therefore, make formal acknowledgments to the following for their invaluable help:

- Dr. Michael Kyakula and Dr. Eng. Mugume Bangi Rodgers- My supervisors.
- Dr. Denis Kalumba, The Head of Department, Geotechnical Engineering at the University of Cape Town in South Africa.
- Sinohydro Corporation Limited- the Main Contractor for the construction of the 600MW Karuma dam and the 400 kV and 132 kV Overhead Power Transmission Lines of the Karuma Interconnection Project (KIP) in Uganda.
- Kalpataru Power Transmission Limited (KPTL) - Sub-contractor of the KIP.
- GOPA-International Energy Consultants (GOPA-Intec GmbH) - The Consulting firm of the Karuma Interconnection Project (KIP) in Uganda.
- My dear wife, Gloria Acidri; and my late mother Mrs. Ray Dramadri whose efforts are seldom acknowledged and yet deserving of more than just a special mention.

Space forbids personal mention of everyone, but to the many who have helped with various resources and advice, I am all the same indebted.

TABLE OF CONTENTS

CERTIFICATION ii
DECLARATION iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS V
LIST OF FIGURES xii
LIST OF TABLES xiii
LIST OF APPENDICES xv
LIST OF ABBREVIATIONS AND ACRONYMS xvi
ABSTRACT xviii
CHAPTER ONE 1
INTRODUCTION 1
1.1 Background of the study 1
1.2 Statement of the Problem 2
1.3 Objectives of the Study 3
1.3.1 Main objective 3
1.3.2 Specific objectives 3
1.4 Research Questions 4
1.5 Research Significance 4
1.6 Scope of Research 5
1.6.1 Content Scope 5
1.6.2 Geographical Scope 5
1.6.3 Time Scope 5
1.7 Conceptual Framework of Research 6
CHAPTER TWO 7
LITERATURE REVIEW 7
2.1 Background of the study 7
2.2 Uncertainties involved in foundation design 10
2.3 General Types of Foundations 10
2.3.1 Shallow Foundations 12
2.3.2 Deep Foundations 13
2.4 Transmission Line foundation types 14
2.4.1 Good Soil Foundations 14
2.4.2 Poor Soil Foundations 15
2.4.3 Soft Rock Soil Foundations 15
2.4.4 Hard Rock Foundations 16
2.4.5 Waterlogged Ground Foundations 16
2.4.6 Pile Foundations 17
2.5 Foundation Load and Settlement Testing 17
2.5.1 Static Load Tests 18
2.5.1.1 Static Axial Compressive Load Test 19
2.5.1.2 Static Axial Tensile Load Test 19
2.5.1.3 Lateral Load Test 20
2.5.2 High Strain Dynamic Load Testing (HSDLT) 20
2.5.3 Statnamic Loading Test 21
2.6 Soil Bearing Capacity Determination 22
2.6.1 Terzaghi's bearing capacity method 22
2.6.1.1 General shear failure case 24
2.6.1.2 Local shear failure case 25
2.6.1.3 Punching shear failure case 26
2.6.2 Meyerhof's bearing capacity method 26
2.6.2.1 Meyerhof's equations 26
2.6.3 Brinch Hansen's bearing capacity method 28
2.6.4 Allowable bearing capacity evaluation from SPT Test 30
2.6.4.1 Terzaghi’s approach 30
2.6.4.2 Bowles's approach based on Meyerhof (1963) 32
2.6.5 Soil bearing capacity evaluation based on DPL test 35
2.6.5.1 The Dutch Formula 35
2.6.6 Soil bearing capacity evaluation based on Shear tests 36
2.6.6.1 Terzaghi’s formula 36
2.6.6.2 Meyerhof's formula 37
2.6.6.3 Hansen's formula 37
2.6.6.4 Vesic's method 38
2.6.7 Effect of water table on bearing capacity calculations 38
CHAPTER THREE 41
METHODOLOGY 41
3.1 Introduction 41
3.2 Project location 42
3.3 The Site Geology 42
3.3.1 General Geology 42
3.3.2 Local Geology 42
3.3.3 The Soils 43
3.3.4 Seismicity 44
3.3.5 Climatic Zones 44
3.4 Parameters for geotechnical and structural designs 45
3.4.1 Test Trial Pits 45
3.4.2 Dynamic Probing Light 48
3.4.3 Standard Penetration Test 50
3.4.4 Borehole drilling 52
3.4.5 Natural Moisture Content 55
3.4.6 Particle Size Distribution (Sieve Analysis) 56
3.4.7 Liquid Limit Tests (Cone Penetrations Method) 58
3.4.8 Liquid Limit Tests (Casagrande Method) 62
3.4.9 Plastic Limit and Plasticity Index Tests 64
3.4.10 Linear Shrinkage Limit Tests 67
3.4.11 pH Test 68
3.4.12 Sulphate and Chloride Content Test 70
3.4.13 Bulk Density and Unit Weight Test 73
3.4.14 Specific Gravity (Particle Density Tests) 76
3.4.15 Direct Shear Test 78
3.4.16 One-dimensional Consolidation Test 81
3.4.17 Soil Resistivity Test 86
3.5 Geotechnical Foundation Design. 89
3.5.1 Evaluation of bearing capacity based on corrected SPT N-values 89
3.5.1.1 Terzaghi's approach (1967) 89
3.5.1.2 Bowles's approach (1982) 89
3.5.2 Pile foundation capacity 89
3.5.2.1 Pile skin resistance capacity 89
3.5.2.2 Pile end bearing resistance 91
3.6 Structural Foundation Design 93
3.6.1 Designing codes used 93
3.6.2 Steel Lattice Tower Designs 93
3.6.3 Structural and high strength steel materials 93
3.6.4 Structural Steel Galvanisation 93
3.6.5 Reinforced concrete design 94
3.7 Foundation full-scale model construction 94
3.7.1 Site clearance and setting out 94
3.7.2 Pit Marking 94
3.7.3 Foundation excavation 95
3.7.4 Lean concreting application 95
3.7.5 Stub setting 95
3.7.6 Reinforcement assembly 96
3.7.7 Formwork assembly 96
3.7.8 Concrete casting 96
3.7.9 Additional quality assurance and quality controls 97
3.8 Static Load Test methodology 98
3.8.1 Test Procedure 98
3.8.2 Reference Literature 98
3.8.3 Foundation loads applied 99
3.8.4 Test Apparatus 99
3.8.5 Arrangement of Apparatus 99
3.8.6 Assembly of foundation test setup 101
3.8.7 Load application 103
3.8.8 Test Procedure 103
3.8.9 Test Evaluation 105
3.9 Schematic diagram for methodological approach 108
CHAPTER FOUR 109
RESULTS AND DISCUSSIONS 109
4.1 Introduction 109
4.2 Insitu Geotechnical Tests 109
4.2.1 Test Trial Pits and Borehole Pits 109
4.2.2 Dynamic Probing Light 110
4.2.3 Standard Penetration Testing 111
4.2.4 Soil Resistivity Testing 112
4.3 Laboratory Tests on soil samples 113
4.3.1 Specific gravity (Particle Density) 113
4.3.2 Direct Shear Test 114
4.3.3 Consolidation Tests 115
4.3.4 Particle Size Distribution (Soil grading) 117
4.3.5 Plasticity Index Interpretations 118
4.3.6 Chemical Analysis Tests 119
4.4 Concrete cube compressive strength tests 122
4.5 Static Load Tests 123
CHAPTER FIVE 125
CONCLUSIONS AND RECOMMENDATIONS 125
5.1 Introduction 125
5.2 Conclusions 126
5.3 Recommendations 127
5.3.1 Current Research Issues 127
5.3.2 Company (Sinohydro Corporation, KPTL, and UETCL) 127
5.3.3 Kyambogo University 127
5.4 Future Research 127
REFERENCES 128

LIST OF FIGURES

Figure 1.1: Conceptual Framework of Research 6
Figure 2.1: A shallow foundation (An-Bin and Hai-Sui, 2018) 12
Figure 2.2: Shallow foundations: (a) pad (b) strip (c) raft (Sivakugan, 2011) 12
Figure 2.3: Deep foundations: (a) Pile (b) drilled shaft (Das and Sobhan, 2018) 14
Figure 2.4: Nature of bearing capacity failure in soil (Das, 2016) 23
Figure 2.5: Effect of groundwater table on bearing capacity (Das and Sobhan, 2018) 39
Figure 3.1: Typical excavated trial pits 47
Figure 3.2: Dynamic Probing Light (DPL) test in the field 50
Figure 3.3: Laboratory team conducting borehole drilling 54
Figure 3.4: Standard Earth Resistivity Meter 88
Figure 3.5: Soil resistivity measurement in the field 88
Figure 3.6a: Static Axial Uplift/Tensile Load Test (MoE \& MD, 2013) 101
Figure 3.6b: Static Axial Uplift/Tensile Load Test (MoE \& MD, 2013) 101
Figure 3.7: Lateral Load Setup (FHWA-SA-91-042, 1992) 101
Figure 3.8: Compressive Load Test (FHWA-SA-91-042, 1992) 102
Figure 3.9: Schematic diagram for methodological approach 108
Figure 4.1: Average 16 -year ratings of concrete in sulphate soils (Stark 2002), 121
Figure 4.2: Compressive Concrete cube strength results 122

LIST OF TABLES

Table 2.1: Bearing capacity failure (Vesic, 1963 and 1973) 23
Table 2.2: Terzaghi’s Bearing Capacity Factors (Das and Sobhan, 2018) 25
Table 2.3: Terzaghi’s Modified Bearing Capacity Factors (Das, 2017) 26
Table 2.4: Meyerhof's factors vs friction angle (Meyerhof, 1951 and 1963) 27
Table 2.5: Consistency table for fine-grained soils (BS 5930: 1999) 34
Table 2.6: Relative strength of coarse-grained soils (BS 5930: 1999) 34
Table 2.7a: Adjustment factors for corrected N'55 values (Bowles, 1997) 34
Table 2.7b: Adjustment factors for corrected N'55 values (Bowles, 1997) 35
Table 2.8: Consistency of granular soils from the DPL test (Nilsson, 2012) 36
Table 2.9: Consistency of fine soils from the DPL test (Nilsson, 2012) 36
Table 2.10: Shape factors for Terzaghi’s equation (Bowles, 1997) 37
Table 3.1: Uganda’s seismic zones (Newmark and Hall, 1969; US 319, 2003) 44
Table 3.2: End bearing of piles (Bowles, 1997) 91
Table 3.3: Inclined foundation load test details 107
Table 4.1: The ground water table depths from the project areas 110
Table 4.2: The summary of soil strata descriptions from the project areas 110
Table 4.3: The DPL result summary for AP 108/20 111
Table 4.4: The SPT result summary for locations 112
Table 4.5: The insitu soil resistivity result summaries 112
Table 4.6: Soil resistivity explanation (Robinson, 1993; Roberge, 2000). 113
Table 4.7: Summary of specific gravity values on site 114
Table 4.8: Specific gravities of some soils (Das, 2016; Das and Sobhan, 2018) 114
Table 4.9: Direct shear summary results for AP 104/5 115
Table 4.10: Consolidation Test Results for AP 104/5 116
Table 4.11 Coefficients of consolidation (George et al., 2006; Carter, 2016*) 116
Table 4.12: Ranges of coefficient of vol. compressibility (mv) (Smith, 2014) 116
Table 4.13: Coefficient of vol. compressibility (Carter and Bentley, 2016) 116
Table 4.14: Summary of grading of locations 118
Table 4.15: Atterberg limit summaries for the sites at the formation level 118
Table 4.16: PI interpretations and cohesiveness (Surendra and Sanjeev, 2017) 119
Table 4.17: Atterberg Limits \& Swell Potential (Pitts, 1984; Kalantari, 1991) 119
Table 4.18: Insitu chemical test results at the formation level 120
Table 4.19: Measured results interpretations for sulphates 120
Table 4.20: Limiting values for chemical exposure (BS EN 206: 2013) 121
Table 4.21: Compressive Concrete cube strength result summaries 123
Table 4.22: Insitu static load test summaries 124
Table 4.23: Slope Readings for insitu static load tests 124
Table 4.24: Foundation load capacity summaries for the locations 124

LIST OF APPENDICES

APPENDICES 142
Appendix A. 1 - Site Location Maps 143
Appendix A. 2 - Geology Map of Uganda 144
Appendix A. 3 - The Seismic Map of Uganda 145
Appendix A. 4 - The Demarcated Rainfall Zones of Uganda 146
Appendix B. 1 - Soil Profiles 147
Appendix B. 2 - Borehole Core Logs and Photos 148
Appendix B. 3 - DPL Results 149
Appendix B. 4 - SPT Results 150
Appendix B. 5 - Soil Resistivity Test Results 151
Appendix B. 6 - Soil Classification Tests 152
Appendix B. 7 - Chemical Analysis Tests 153
Appendix B. 8 - Shear and Consolidation Test Results 154
Appendix C. 1 - Concrete Cube Test Results 155
Appendix C. 2 - Density Test Results 156
Appendix D - Static Load Test 157
Appendix E - Research Time Schedule 158
Appendix F - Research Budget 159
Appendix G - Drawings 160
Appendix H - Photos. 161
Appendix I - Calculations 162

LIST OF ABBREVIATIONS AND ACRONYMS

AASHTO	American Association of State Highway and Transportation Officials
ACI	American Concrete Institute
AISC	American Institute of Steel Construction
ANSI	American National Standards Institute
BS	British Standard code(s) of practice
CGS	Canadian Geotechnical Society
CH	Clays of High Plasticity
CI	Clays of Intermediate Plasticity
CL	Clays of Low Plasticity
EPCC	Engineering, Procurement and Construction Contractor
FHWA	The Federal Highway Administration
GB	Giga Byte
GC	Clayey Gravels
GM	Silty Gravels
GOPA	Gesellschaft für Organisation, Planung und Ausbildung mbH
GoU	Government of Uganda
GPS	Geographical Positioning Systems
INTEC	International Energy Consultants
ISBN	International Standard Book Number
KIP	Karuma Interconnection Project
km	Kilometre
KPTL	Kalpataru Power Transmission Limited
kV	Kilo Volts

LL	Liquid Limit
Ltd	Limited
MH	Silts of High Plasticity
Min.	Minimum
ML	Silts of Low Plasticity
MoWT	Ministry of Works and Transport
NMC	Natural Moisture Content
OMC	Optimum Moisture Content
PDCA	Painting and Decorating Contractors of America
PI	Plasticity Index
PL	Plastic Limit
ROW	Right of Way
SBC	Soil Bearing Capacity
SC	Clayey Sands
SI	Système Internationale (International System of Units)
SM	Silty Sands
SPT	Standard Penetration Test
TL	Transmission Line
TWR	Tower
USh / UGx	Uganda Shilling
UTM	Universal Transverse Mercator
\%	Per cent
-	Degree angle

Abstract

Foundations for overhead transmission line lattice towers are subjected to overturning loads imposed by winds and impact. Hence, they are designed to resist uplift, compression, lateral and interconnection cable line-tension forces. However, due to the non-linear nature of the load-displacement response for typical transmission line foundations, uncertainties in subsoil behaviour and design models, variations in soil strata, limits of site explorations, and diversity in construction methodologies, the performance of the full scale foundation model was analysed using the reliability-based Static loading test methods.

The researcher used prescriptive design methods in geotechnical investigations, insitu and laboratory tests, geotechnical and structural designs using the load and resistance factor design approach, computer aided design tools, and static load test methods of static axial tensile, static axial compressive, and lateral load tests, to replicate and validate the foundation's insitu long-term sustained load capacity and subsequent displacements.

The findings showed moderately aggressive chemical and environmental conditions, finegrained soils with low swell potential and medium-dense to hard soil consistencies under $0.3-10 \mathrm{~m}$ ground water table levels. The static load test results showed a 20% increase in design efficiency, 15-35\% cost savings, and 80% reduced displacement overdesigns based on the insitu displacement values of less than 20% of the prescriptive design values.

Although this research has advanced the understanding about transmission line foundation designs using prescriptive design and static loading test methods, further research must be done in quantifying the influence of ambient temperature, weather variations, and rate of insitu backfill-soil compaction on static load test results.

Key words: Foundations, Prescriptive design, Static load test, Transmission Towers xviii

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Foundation substructures are essential structural members that transmit and distribute different kinds of superstructure loads to the subsoil or rock below without exceeding the bearing capacity of the ground and preventing excessive or uneven settlements, and they are generally classified as shallow or spread and deep foundations (Kaushik et al., 2010; Sivakugan and Braja, 2011; Manjriker, 2014). Foundations must fulfil both structural and geotechnical requirements. However, due to uncertainties of the subsoil behaviour, most foundations are either statically or dynamically tested to verify conformity with the design load; the latter is not commonly used in Sub-Saharan Africa since it is a confirmatory test following the failure of a static load test (FHWA-SA-91-042, 1992; Byrne and Berry, 2008).

In Uganda, since 2013, load tests have been used to either prove the maximum capacity of the foundation and/or to verify the predicted design values and settlements under pressure on a foundation that is expendable to the main works; and at times on a working pile whilst limiting the maximum test load to less than 1.5 times the safe working load (Monnet, 2015; Cockerill et al., 2017).

Prescriptive design methods such as design codes, calculations and specifications are conservative which leads to overdesigns that stifle innovation and least-cost solutions (Tavares, 2009). Therefore, there is a need to further study and compare the suitability of the prescriptive design methods using the foundation test methods as a design verification tool.

This research, therefore, sought to compare the traditional prescriptive-foundation design method used in Uganda with the newly introduced Static load test method.

1.2 Statement of the Problem

Foundation testing is an important part of the post-foundation construction and/or installation process mainly because of uncertainties in ground conditions and design models (England and Fleming, 1994; Coduto, 2001; Tipter, 2018).

Despite recent improvements in site characterisation, exploration strategies, and construction methodologies to reduce uncertainty and variance in analysis, prescriptive design methods have continued to be used with about 66.7% of electric transmission and overhead line design engineers using the prescriptive method of applying traditional global factor of safety ranging from 2.5 to 4.0 depending on the structure type, foundation type, and design model (Cockerill et al., 2017; Kandaris and Davidow, 2018).

Due to the nonlinear nature of the load-displacement response for typical transmission line foundations and the prescriptive design's tendency to give linear design solutions unlike static load tests (Kandaris and Davidow, 2018), the prescriptive design method cannot therefore, be solely relied upon in assessing the foundation's load-displacement performance in either axial or lateral load modes (Rodrigo et al., 2008; Sivakugan and Braja, 2011; Ministry of Energy and Mineral Development (MoE \& MD), 2013; Ghannoum, 2017). This gap, thus, created a need to verify the prescriptive design calculation outputs for a foundation design on a case by case basis using the static load test method as a fundamental and benchmark form of all insitu long-term sustained loading tests (Byrne and Berry,

2008; Monnet, 2015; Tomlinson and Woodward, 2015) in the determination of the foundation's ultimate load bearing capacities and validation of the foundation design assumptions (England and Fleming, 1994).

This research, therefore, showed how typical correlation factors used in prescriptive designs were verified under the insitu static load tests, and it validated the ability of the foundations to support the proposed design loads at predetermined elevations and particular soil strata.

1.3 Objectives of the Study

1.3.1 Main objective

To conduct a comparative analysis of the foundation's performance using the prescriptive design method and insitu static load tests under sustained axial loading.

1.3.2 Specific objectives

The specific objectives of this research were:

- To establish the parameters for geotechnical and structural designs of foundations,
- To carry out geotechnical and structural designs, drafting and detailing of foundation systems based on the parameters,
- To construct insitu full-scale foundation test model with all the quality assurance and quality control checks done, and
- To test the full-scale foundation test model using the insitu static load test method which is the benchmark and most fundamental form of all foundation load test methods; and then analyse the output with reference to the initial prescriptive structural design calculations.

1.4 Research Questions

The following research questions were used during the study:

- What essential tests and parameters are relevant, prior to carrying out the geotechnical and/or structural designs of the foundations?
- What methods can be used to carry out the foundation's geotechnical and/or structural designs, drafting and detailing works?
- What kind of foundation test models shall be constructed for use?
- What load testing methods can be used on the insitu foundation test models to compare the results with those of the prescriptive methods?

1.5 Research Significance

This research study generally had the following significance:

- This study provided insight into the use of static load tests -the benchmark and most fundamental form of all current foundation load test methods- in analysing foundation capacities in Uganda since this is not yet fully adopted by the local engineering fraternity.
- The research study was of great benefit to students in the Civil and Building and/or Structural Engineering fraternities in and Universities and other institutions of higher learning; helping them to gain an in-depth knowledge of the static load test which is the benchmark and most fundamental form of all current foundation load test methods.
- This research offered people who do not belong to the engineering fraternity with information for shaping future national policies about foundation static loading tests -a method for keeping checks on costly conservative designs.

1.6 Scope of Research

1.6.1 Content Scope

This research mainly focused on establishing the foundation's parameters for geotechnical and structural designs, undertaking prescriptive structural design calculations and comparing these results with those of static load tests -the benchmark of all foundation load test methods- on a number of constructed fullscale foundation test models. The models were a total of four (4) for the entire transmission lines as the EPC Contractor, Sinohydro Corporation Ltd had constraints in resources, right of way and land acquisition payment issues.

1.6.2 Geographical Scope

The case study was the Karuma Interconnection Project (KIP) in Uganda, along 248 km Karuma-Kawanda (400 kV) and 77 km Karuma-Lira (132 kV) Transmission Lines (TL).

1.6.3 Time Scope

The research was carried out within a duration of twelve (12) months, starting in the month of August 2018 until August 2019.

Conceptual Framework of Research

The conceptual frame of the research project was shown below:

Independent Variables

- Geotechnical investigations, designs and analyses.
- Structural designs and analyses.
- Insitu full-scale modeling.
- Insitu static load test.

Methods

- Prescriptive geotechnical and structural design methods.
- Design codes and technical specifications.
- Insitu static load tension, lateral \& compression tests.
- CADD software e.g. Prokon, AutoCAD, etc.

Dependent Variables

- Soil/geotechnical properties.
- Foundation design and detailing.
- Foundation's ultimate load bearing capacities.
- Load-displacement curve, timedisplacement \& time-load graphs.

Outcomes

- Determination of allowable or ultimate load bearing capacities of foundations.
- Site condition confirmation.
- The foundation's performance of load and displacements.
- Foundation CAD designs.

Impacts/Benefits

- Achieving a much safer infrastructure while using a workable factor of safety in designs.
- Reduced cost/minimized overdesigning of the foundations and entire infrastructure

Figure 1.1: Conceptual Framework of Research

CHAPTER TWO

LITERATURE REVIEW

2.1 Background of the study

Foundation design entails that neither the foundation units collapse nor should they induce the overall shear failure of the supporting ground, lest the foundation's postconstruction settlement values exceed the permissible tolerances in the codes and specifications (Tomlinson and Boorman, 2001; Mosley et al., 2007; Bayliss and Hardy, 2011; Emuriat, 2017).

The design of foundations consists of proportioning the foundation, mitigating the limit state conditions such as the ultimate limit state properties of loss of static equilibrium of the structure, failure by collapse or by fatigue; and/or the serviceability limit state properties of deflection, cracking, vibration, and deterioration of the foundation structure (Przewłócki et al., 2005; Salgado, 2006; Sivakugan and Braja, 2011; An-Bin and Hai-Sui, 2018).

In order to design against these limit states, analyses are carried out that allow for estimating the limit states, and determining the modulus of deformability of the soil, amount of settlement and internal stresses in the foundations; which results are then used to verify if the related limit states are reached (Rodrigo et al., 2008; McCormac and Csernak, 2012; Emuriat, 2017).

The most commonly known foundation design methods are the Load and Resistance Factor Design (LRFD) method and the Allowable Stress Design (ASD) method, both procedures being based on the Limit States Design (LSD) principles,
which provide the boundaries of structural usefulness (Mosley et al., 2007; ANSI/AISC 360-10, 2010; Rausche et al., 2012).

Whereas the LRFD method attempts to unify the design codes for different construction materials and structural systems with the requirement that the strength provided in design is greater than or at least equal to factored loads acting, the ASD method entails that design loads be compared to the nominal resistance of the system by a factor of safety (Honjo et al., 2000; Bilge et al., 2011; McCormac and Csernak, 2012).

Many design codes such as the AASHTO, ACI, AISC, and PDCA in the United States, and codes across Canada, Australia, Europe and Africa including Ethiopia and Uganda among many nations, have adopted the LRFD approach over the ASD method in treating soil uncertainties and considering the real behaviour of foundation structures (Coduto, 2001; Foye et al., 2006a; Foye et al., 2006b; Mosley et al., 2007).

Uncertainties in geotechnical models and parameters and their effect have long been recognised (Lacasse and Nadim, 1994; Gilbert and Tang, 1995; Phoon and Kulhawy, 1999; Whitman, 2000; Juang et al., 2004; Schuster et al., 2008; Zhang et al., 2009; Juang et al., 2009). Thus, to perform a geotechnical and/or foundation design using the prescriptive design approaches, conservative values of the uncertain soil parameters are often adopted along with an 'experience-calibrated' factor of safety (Juang et al., 2012; Emuriat, 2017).

While the prescriptive design approach has successfully been used for many decades, it lacks the detailed capacity to render a much more realistic performance
and behaviour of geotechnical systems and structures such as foundations especially in the presence of these varying uncertainties (Juang et al., 2012).

With reference to Honjo et al. (2000), Foye et al. (2006a) and Foye et al. (2006b), it was noted that the magnitude of uncertainties involved in the foundation affects the quantity of partial factors assigned to the load and the resistance side of the design, and when compared to the superstructures, foundations and/or geotechnical structures have more unresolved uncertainties in the resistance side than load side (Juang et al., 2012). So, whether the LRFD or ASD approach is used, the goal is to reduce the probability of failure and to obtain a numerical margin between resistance and load resulting in a tolerable small margin of unacceptable structural response (McCormac and Csernak, 2012; Rodrigo et al., 2008).

The uncertainties such as the detailed area geology, and human errors during construction works have been captured and/or controlled in this framework through detailed geotechnical laboratory tests, insitu static load tests, strict adherence to the construction methodology and enforcement of the quality assurance/quality control as detailed in clause S2.0 of the Technical Specification for transmission lines.

In the quest to obtain a more rational design, many researchers such as Wu et al. (1989), Christian et al. (1994), Whitman (2000), Phoon et al. (2003a, b), Fenton et al. (2005), Najjar and Gilbert (2009), Wang (2011), and Zhang et al. (2011) have turned to reliability-based designs such as foundation full-scale models, analyses and foundation tests, which creates a much more-realistic geotechnical and/or foundation outcome and is better in quantifying the uncertainties in soil parameters than the prescriptive design approaches (Juang et al., 2012). Therefore, since also
soils can soften or harden upon shearing and have a much more complex response than perfect plasticity, the recent focus on using realistic full-scale models (Venkatesh et al., 2008; Rodrigo et al., 2008), provides important insights into the overall response of foundations (Barvashov et al., 2008; Murad et al., 2017).

2.2 Uncertainties involved in foundation design

Most foundation design uncertainties originate from both structural and geotechnical aspects such as the uncertainties in estimating load effects, inherent variability of the ground, evaluation of geotechnical material properties, and uncertainties with the degree to which the analysis represents the actual behaviour of the foundation and ground supporting it (Coduto, 2001; Barends, 2011; Seeley and Winfield, 2015; Das and Sobhan, 2018).

It is worth noting that the natural ground variability and evaluation of geotechnical properties usually constitute the greatest uncertainty, commensurate with the complex geological processes involved with the deposition and formation of soil and rock; whereas in contrast, gross errors including human errors or omissions that occur in practice are not quantified or taken into account through safety factors in design. These errors are usually mitigated through quality control and quality assurance programs, and independent third-party reviews on larger projects (Ming and Barreto, 2015; Thounaojam and Sultana, 2015; Sriram and Prasad, 2017).

2.3 General Types of Foundations

A foundation being a critical element of any structure, ought to safely carry the desired loads both structurally and geotechnically, and transfers the structure's loads to the soil on to which it is resting (Al-Khafaji and Andersland, 1992; Bowles,

1997; Mosley et al., 2007; Das and Sobhan, 2018). A properly designed foundation transfers the loads through the soil strata without leading to any abrupt increased settlement under any additional load increment and/or without causing any shear failure of the soil. The settlements and shear failures of the soil may cause damage to the entire structure; and if the soil cannot support the applied loads with a sufficient margin of safety, then settlements of the substructure might occur, thus rendering the structure unsafe and causing either expensive remediation or demolition (Barends, 2011; Bosela et al., 2012).

Generally, foundations are classified as either shallow or deep foundations. Shallow foundations include strip, pad and raft foundations meanwhile, deep foundations include piles, piers, diaphragm walls and caissons which are used when construction is to be on soft compressible soil (Mathieson et al., 2004; Reese et al., 2006) or when the structure is subjected to horizontal loads or moments (Hardy and Spangler, 2007), or whenever foundation settlement is inadmissible or dewatering is to be dispensed with (Bazant, 1979; Terzaghi et al., 1996; Murthy, 2007; Salgado et al., 2007; Das and Sobhan, 2018; An-Bin and Hai-Sui, 2018).

Shallow foundations have been widely used for overhead power transmission lines because in terms of cost, construction, material, and labour work, they have certain advantages over other foundation types such as piles, piers, caissons, and deep foundations. However, using shallow foundations when there are issues of settlement, irregular ground surface or combined bending and axial loading might cause problems (Bowles, 1995; Coduto, 2001; Bayliss and Hardy, 2011; Ming and Barreto, 2015; Sriram and Prasad, 2017).

2.3.1 Shallow Foundations

Terzaghi (1943) suggested that a foundation is shallow if its depth $\left(D_{f}\right)$ is less than or equal to its width (B) that is, $D_{f} / B \leq 1$. Al-Khafaji and Andersland (1992) defined shallow foundations as any footing that has a width (B) equal to or greater than the depth at which it is buried $\left(D_{f}\right)$ that is, $\mathrm{B} \geq D_{f}$, and more accurately, a shallow foundation is one with an embedment depth $\left(D_{f}\right)$ equal to or less than four times the foundation width (B) that is, $D_{f} \leq 4 B$. Thus, foundations with depth $\left(D_{f}\right)$ equal to 3 to 4 times their width (B) may be considered shallow. Examples include strip footings and spread footings for both isolated and combined raft or mat foundations (Barends, 2011; Das, 2016; Das and Sobhan, 2018; An-Bin and HaiSui, 2018; Das, 2019).

Figure 2.1: A shallow foundation (An-Bin and Hai-Sui, 2018)

Figure 2.2: Shallow foundations: (a) pad (b) strip (c) raft (Sivakugan, 2011)

2.3.2 Deep Foundations

Deep foundations are those that receive some or all of their support from soil strata at a depth where the embedment depth $\left(D_{f}\right)$ is equal to or greater than four times the foundation width (B) that is, $D_{f} \geq 4 B$ (Das and Sobhan, 2018; An-Bin and HaiSui, 2018), and are principally used when weak or otherwise unsuitable soil exists near the ground surface and vertical loads must be carried to strong soils at depth (Murthy, 2007). Deep foundations are also defined as any footing that has a width smaller than the depth to which it extends (Al-Khafaji and Andersland, 1992).

Deep foundations have a number of other uses, such as to resist scour, to sustain axial loading by side resistance in strata of granular soil or competent clay, to allow above-water construction when piles are driven through the legs of a template to support an offshore platform, to serve as breasting and mooring dolphins, and to improve the stability of slopes among special purposes.

The principal deep foundations of driven piles, drilled shafts, caissons and barrettes (Mathieson et al., 2004; Reese et al., 2006) are structural columns that extend down into soil as either end-bearing if they extend all the way to rock or hard soil, or as friction piles if they are mainly supported by friction along the sides (Ming and Barreto, 2015), and as compaction piles when they are driven into loose sand to densify or increase its bearing capacity (Hardy and Spangler, 2007; Barends, 2011).

Figure 2.3: Deep foundations: (a) Pile (b) drilled shaft (Das and Sobhan, 2018)

2.4 Transmission Line foundation types

The most common foundations types used on transmission lines in Uganda are the good soil, poor soil, soft rock, hard rock, waterlogged and pile foundations according to the soil conditions, equivalent structure size and load components acting on the foundations (IS 5613-2-2, 1985; IS 1200-1, 1992; Kim and Cho, 1995; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011; MoE \& MD, 2013; Sriram and Prasad, 2017).

2.4.1 Good Soil Foundations

These types of foundations are Concrete Pyramid/Block type, that is, Plain Cement Concrete (PCC) or Reinforced Cement Concrete (RCC) Pad and Chimney foundations, especially where the soil investigations show good underlying soils at normal foundation depths below poor top soils/silts; and they are cast directly against the edge of the excavation for a minimum height of 350 mm ; with the earth frustum assumed to resist uplift and considered to start from the bottom of the vertical edges of the given concrete foundation type in use (MoE \& MD, 2013;

Sriram and Prasad, 2017). However, where such a concrete and excavated soil interface cannot be achieved, the frustum is assumed to start from the top of the pad edges (IS 5613-2-2, 1985; IS 1200-1, 1992; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011).

2.4.2 Poor Soil Foundations

These types of foundations are used where the soil investigations show that the top layer of "black cotton" soil exceeds 50% or extends up to full depth with the subsoil water/ground water table being far below the formation level of excavation. These foundations exist were the soils are weak or fine-grained, or where water is at the underside of that foundation subject to the extent of any seasonal or monsoonal inundation (IS 5613-2-2, 1985; IS 1200-1, 1992; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011; MoE \& MD, 2013; Sriram and Prasad, 2017).

2.4.3 Soft Rock Soil Foundations

These types of foundations are generally used for locations where "Soft Rock" occurs for more than the bottom 50\% of the "Good Soil" foundation depth.

These "Soft Rocks" include homogeneously weathered rocks, hard rocks which has been fissured and stratified, and/or decomposed rocks. For this foundation type, the size of excavations is no larger than that of "Good Soil" foundations but undercut at the base; the depth of the excavation made at least half the full depth of the excavation required for a "Good Soil" foundation, with the base of the excavation undercut into the soft rock by at least 250 mm all round at an angle between 45° and 60° to the horizontal; and the resistance against sliding created by casting the foundation against the rock surface, for which the excavation is the exact size of
the foundation (IS 5613-2-2, 1985; IS 1200-1, 1992; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011; MoE \& MD, 2013; Sriram and Prasad, 2017).

2.4.4 Hard Rock Foundations

This foundation type falls under "Guyed tower foundations" and is used where "Hard Rock" is encountered at 1.5 m depth or less below ground level, and/or where the foundation stub legs can be set with a minimum depth of 0.9 m into a concrete block, or where sufficient stub cleats are used to ensure full transfer of load within the foundation. Thus, in hard rock foundations, the upper parts of the stubs are encased in concrete to a height of 300 mm above ground level, and a sufficient number of rebars are grouted into the rock using an expanding grout, for a minimum depth of 1.2 m from the base of the excavation to ensure adequate uplift resistance; whereas, resistance against sliding is generated by casting the foundation against the rock surface, for which excavation shall be the exact size of the foundation, and provisions are made for use of "rock anchor bars" for resistance against uplift (IS 5613-2-2, 1985; IS 1200-1, 1992; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011; MoE \& MD, 2013; Sriram and Prasad, 2017).

2.4.5 Waterlogged Ground Foundations

The waterlogged RCC raft type foundations are used where soil investigations show that the locations are either waterlogged, submerged or swampy, or where "black cotton" and other types of soils are subjected to substantially long term or permanent submersion at depths greater than or equal to normal shallow foundation depths (IS 5613-2-2, 1985; IS 1200-1, 1992; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011; Sriram and Prasad, 2017).

2.4.6 Pile Foundations

Pile foundations are principally considered when soils exhibit low bearing capacities, or if they are deep swampy or other types of soil found to be unsuitable for a concrete raft type foundation and/or any of the above forms of waterlogged raft foundation types (IS 5613-2-2, 1985; IEEE-691, 2001; Jang et al., 2007). They are often used where there is a concern about excessive settlement of shallow foundations, even though a raft would have an acceptable factor of safety (FoS) in the excesses of 3 against bearing-capacity failure. Hence, it should be noted that these pile foundations usually transmit structural loads through soft and unsuitable upper soil layers to deeper more competent strata, to resist uplift or lateral forces, to support structures over water and carry loads below scour depths (IS 5613-2-2, 1985; IS 1200-1, 1992; IEEE-691, 2001; Jang et al., 2007; Bayliss and Hardy, 2011; Sriram and Prasad, 2017).

2.5 Foundation Load and Settlement Testing

Reza and Abdolhosain (2013) noted that the most popular methods for settlement predictions were proposed by Terzaghi and Peck (1967), Schmertmann (1970), Schmertmann et al. (1978), Burland et al. (1985), and Meyerhof (1956). Reza and Abdolhosain (2013) also stated that various other researchers such as D'Appolonia et al. (1970), Berardi and Lancellotta (1991), Sargand et al. (1997), Shahin et al. (2002), Sivakugan and Johnson (2004), Rasin and Kasktas (2009), and Duzceer (2009), suggested different models and formulae to arrive at the settlement.

Al-Taie et al. (2016) divided various methods to calculate the elastic settlement available at the present time into three general categories such as empirical, semiempirical and theoretical. On the other hand, Das and Sivakugan (2007) stated that,
one of the main factors that contribute to the uncertainty in load-settlement predictions is our inability to correctly quantify the soil stiffness, hence, the need for the foundation load test which can validate the computed capacity for a foundation and also provide information for the improvement of design rationale (Poulos and Davis, 1980). There are about three major types of foundation loading tests, namely static load testing, dynamic load testing, and statnamic load testing (Monnet, 2015; Tomlinson and Woodward, 2015).

2.5.1 Static Load Tests

Static Load Tests (SLT) are the most reliable and fundamental forms of in-situ loading tests. They are considered as the bench-mark of foundation performance and used for validating the foundation load capacity and other foundation design assumptions regarding the axial compression or axial tension resistance provided by a foundation element, or its deflected shape under a lateral load. They involve the direct measurement of foundation head displacements in response to a physically applied test load until its failure point to replicate the long-term sustained load conditions (Byrne and Berry, 2008; Monnet, 2015; Tomlinson and Woodward, 2015). These tests are standardised by ASTM D1143 for Standard Test Methods for Deep Foundations Under Static Axial Compressive Load; ASTM D3689 for Standard Test Methods for Deep Foundations Under Static Axial Tensile (or uplift) Load; and ASTM D3966 for Standard Test Methods for Deep Foundations Under Lateral Load (Hertlein and Davis, 2006; ASTM D1143, 2013; ASTM D3689, 2013; ASTM D3966, 2013; Monnet, 2015).

2.5.1.1 Static Axial Compressive Load Test

Static Axial Compressive Load Test measures the axial deflections of vertical or inclined foundations when loaded in static axial compression. This vertical compression maintained-load test is usually carried out to confirm the foundation's structural and geotechnical reliability and to predict its settlement rate. The load is thus, increased in stages until the proposed working load and a certain factor of safety is reached and then unloading the load until the rise or rebound has substantially ceased as per ASTM D1143/D1143M-07 (2013).

The foundation may be tested in three cycles; whereby the first cycle is to 150% of foundation's Design Load (DL), the second cycle test is to 200% of DL and the third cycle tests the foundation to its ultimate load, defined as 250% to 300% of its DL (Hertlein and Davis, 2006; ASTM D1143, 2013). Since the procedure leading up to 300% of the Design Load is very time consuming, the most commonly used method stops at the first cycle up to 150% of the foundation's Design load but may be limited to between 100% to 130% of the design load (IEC 61773, 1996; Byrne and Berry, 2008; Monnet, 2015).

2.5.1.2 Static Axial Tensile Load Test

As standardised by ASTM D3689/D3689M-07 (2013) and COMESA/FDHS 293 (2007), the Static Axial Tensile Load test is used for verifying the behaviour of vertical or batter tension foundations like those of overhead transmission lines with respect to their tensile capacity and axial stiffness, and it provides the most reliable relationship between the static tensile load applied axially to a foundation and the resulting axial movements. Hence, the information obtained are used in assessing the foundation shaft's side shear resistance distribution, amount of end-bearing
developed and the long-term load-deflection behaviour. It can also be used to determine if the foundation has an ultimate static capacity and a deflection at service load satisfactory to support a specified foundation or superstructure (Hertlein and Davis, 2006; COMESA/FDHS 293, 2007; ASTM D3689, 2013).

2.5.1.3 Lateral Load Test

As per ASTM D3966/D3966M-07 (2013), the Lateral Load test measures the lateral deflection of a vertical or inclined foundation when subjected to lateral loading, with the results helping in characterising the variation of pile-soil interaction properties such as the coefficient of horizontal subgrade reaction, and the estimation of bending stresses and lateral deflection over the length of the pile for use in the structural design of the pile (Hertlein and Davis, 2006; COMESA/FDHS 293, 2007; ASTM D3966, 2013).

2.5.2 High Strain Dynamic Load Testing (HSDLT)

High Strain Dynamic Load Testing (HSDLT) is a fast and effective method for assessing the foundation's bearing capacity and integrity. It is usually carried out as a supplement to static load tests in corroborating results (Rausche et al., 1985; Long, 2007; Basarkar et al., 2011). Here, a dynamic load is applied to the pile head using a falling mass while recording acceleration and strain on it. This test procedure is standardised by ASTM D4945-17 Standard Test Method for High Strain Dynamic Testing (HSDT) of Piles, encompassing both Dynamic Pile Monitoring (DPM) and Dynamic Load Testing (ASTM D4945, 2017).

The HSDT method is called Dynamic Pile Monitoring (DPM) when it is applied during pile driving to compute the energy delivered to the pile, compression
stresses at the pile top and toe, and tension stresses along the shaft as well as the pile integrity; whereas it is called Dynamic Load Testing (DLT) when it is applied after pile installations regardless of the installation method. It is used in the computing of static capacity and resistance distribution. In addition to the static load capacity of the foundation, dynamic load tests provide data on the force delivered by the pile driving hammer to the pile, maximum driving compressive stresses, structural damage location and extent, resistance distribution, hammer performance, and soil characteristics such as soil damping coefficients and quake values (Hertlein and Davis, 2006; Tomlinson and Woodward, 2015).

2.5.3 Statnamic Loading Test

Statnamic Loading Test is a quasi-static loading test carried out in accordance with ASTM D7383-10 for Standard Test Methods for Axial Compressive Force Pulse (Rapid) Testing of Deep Foundations. Statnamic testing works by accelerating a mass upward that in turn imparts a load onto the foundation pile below the Statnamic device. The load is applied and removed smoothly resulting in load application of 100 to 200 milliseconds. This is 30 to 40 times the duration of dynamic pile load testing. As the duration of the loading is relatively long, piles less than 40 m in length remain in compression throughout the test, resulting in negligible stress wave effects and potentially simpler analysis. For foundation design, it is necessary to derive the equivalent static load-displacement curve from the Statnamic data (Middendorp et al., 1992). The simplest form of Statnamic analysis used to obtain equivalent static pile response is known as the unloading point method (Hertlein and Davis, 2006; ASTM D7383-10, 2010; Tomlinson and Woodward, 2015).

2.6 Soil Bearing Capacity Determination

The soil's bearing capacity is its resistive capacity against the applied load. On the other hand, bearing pressure can be defined as the maximum contact pressure between the foundation and the soil before failure (Barends, 2011; Das, 2016). The ultimate bearing capacity of a soil $\left(\mathrm{q}_{\text {ult }}\right)$ is the theoretical maximum load per unit area of the foundation at which it can be supported without failure. The design or allowable bearing capacity $\left(\mathrm{q}_{\text {all }}\right)$ is the maximum possible loading that can be applied over a unit area in which the soil is safely able to resist instability due to shear failure and without exceeding the maximum tolerable settlement; and it is normally calculated from the ultimate bearing capacity using a factor of safety (Das and Sobhan, 2018; An-Bin and Hai-Sui, 2018; Das, 2019).

There are several methods used for determining the bearing capacity of the soil (Das and Sobhan, 2018), but the commonest under limit equilibrium are Terzaghi's bearing capacity (Terzaghi, 1943), Meyerhof's bearing capacity theories (Meyerhof, 1951 and 1963), and Jørgen Brinch Hansen’s bearing capacity equations (Hansen, 1970).

2.6.1 Terzaghi's bearing capacity method

Terzaghi (1943) expanded the limit equilibrium theory from two model tests and showed that there are three modes of failure in soil that limit bearing capacity, namely the general shear, local shear, and punching shear failures (Das, 2016; Das and Sobhan, 2018) as shown in Figure 2.4 below. Meanwhile, Table 2.1 presents a summary of the types of bearing capacity failures that would most likely develop, based on soil type and soil properties.

Figure 2.4: Nature of bearing capacity failure in soil (Das, 2016)

Table 2.1: Bearing capacity failure (Vesic, 1963 and 1973)

Cohesionless soil (e.g. sand)					Cohesive soil (e.g. clays)	
Bearing capacity failure	Density condition	Relative density	$\left(\boldsymbol{N}_{\mathbf{1}}\right)_{\mathbf{6 0}}$	Soil Consistency	Undrained shear strength	
General shear (Fig. 2.4a)	Dense to very dense	$65-100 \%$	>20	Very stiff to hard	$>100 \mathrm{kPa}$	
Local shear (Fig. 2.4b)	Medium	$35-65 \%$	$5-20$	Medium to stiff	$25-100 \mathrm{kPa}$	
Punching shear (Fig. 2.4c)	Loose to very loose	$0-35 \%$	<5	Soft to very soft	$<25 \mathrm{kPa}$	

Where: $\left(N_{1}\right)_{60}$ is the corrected Standard Penetration Test (SPT) value.

2.6.1.1 General shear failure case

This type of failure is normally seen in dense and stiff soils. In design, failures in this mode are handled by equations 2.1 to 2.4 that account for soil cohesion, friction, embedment, surcharge, and self-weight, as given below for square, rectangular, continuous and circular footings respectively (Das, 2016):
$\mathrm{quith}=1.3 \mathrm{c}^{\prime} \mathrm{N}_{\mathrm{c}}+\mathrm{qN} \mathrm{N}_{\mathrm{q}}+0.4 \gamma^{\prime} \mathrm{BN}_{\gamma}$
$\mathrm{q}_{\text {ult }}=\left(1+0.3 \frac{B}{L}\right) \mathrm{c}^{\prime} \mathrm{N}_{\mathrm{c}}+\mathrm{qN}_{\mathrm{q}}+\left(1-0.2 \frac{B}{L}\right) 0.5 \gamma^{\prime} \mathrm{BN}_{\gamma}$
$q_{\text {ult }}=c^{\prime} N_{c}+q N_{q}+0.5 \gamma^{\prime} \mathrm{BN}_{\gamma}$
$\mathrm{q}_{\text {ult }}=1.3 \mathrm{c}^{\prime} \mathrm{N}_{\mathrm{c}}+\mathrm{qN}_{\mathrm{q}}+0.3 \gamma^{\prime} \mathrm{BN}_{\gamma}$

Where:
$\mathrm{q}_{\text {ult }}=$ ultimate bearing capacity of the foundation
$\mathrm{q}=\gamma \mathrm{D}_{\mathrm{f}}=$ unit surcharge; and $\gamma^{\prime}=$ effective unit weight of soil
$D_{f}=$ depth of foundation; $\mathrm{c}^{\prime}=\frac{2}{3} \mathrm{c}=$ effective cohesion; and $\mathrm{c}=$ cohesion
$\mathrm{N}_{\mathrm{q}}, \mathrm{N}_{\mathrm{c}}$, and $\mathrm{N}_{\gamma}=$ Terzaghi's bearing capacity factors
$\mathrm{N}_{\mathrm{q}}=\frac{e^{2 \pi\left(0.75-\phi^{\prime} / 360\right) \tan \phi^{\prime}}}{2 \cos ^{2}\left(45+\phi^{\prime} / 2\right)} ; \mathrm{N}_{\mathrm{c}}=5.14$ for $\emptyset^{\prime}=0$; and $\mathrm{N}_{\mathrm{c}}=\frac{\mathrm{N}_{\mathrm{q}}-1}{\tan \emptyset^{\prime}}$ for $\emptyset^{\prime}>0$
$\mathrm{N}_{\gamma}=\frac{\tan \varnothing^{\prime}}{2}\left(\frac{K_{P \gamma}}{\cos ^{2} \emptyset^{\prime}}-1\right)$; and $\mathrm{B}=$ width or the diameter of the foundation
$\varnothing^{\prime}=$ effecive internal friction angle, and
$\mathrm{K}_{\mathrm{P} \gamma}=$ passive pressure coefficient

However, simplifications by Coduto (2001) eliminates the use of $\mathrm{K}_{\mathrm{P} \gamma}$, and gives accurate values to within 10% when the simplified $\left(\mathrm{N}_{\gamma}\right)$ below is used:
$\mathrm{N}_{\gamma}=\frac{2\left(\mathrm{~N}_{\mathrm{q}}+1\right) \tan \emptyset^{\prime}}{1+0.4 \sin 4 \emptyset^{\prime}}$

2.6.1.2 Local shear failure case

This type of failure is normally seen in relatively loose and soft soils; thus, for foundations that exhibit this failure mode in soils, Terzaghi (1943) suggested the following modifications to the previous equations 2.1 to 2.4 for square, rectangular, continuous and circular footings respectively (Das, 2016):
$\mathrm{q}_{\mathrm{ult}}=0.867 \mathrm{c}^{\prime} N_{c}^{\prime}+\mathrm{q} N_{q}^{\prime}+0.4 \gamma^{\prime} \mathrm{B} N_{\gamma}^{\prime}$
$\mathrm{q}_{\text {ult }}=\left(1+0.3 \frac{B}{L}\right) 0.867 \mathrm{c}^{\prime} \mathrm{N}_{\mathrm{c}}+\mathrm{qN}_{\mathrm{q}}+\left(1-0.2 \frac{B}{L}\right) 0.5 \gamma^{\prime} \mathrm{BN}_{\gamma}$
$\mathrm{q}_{\mathrm{ult}}=\frac{2}{3} \mathrm{c}^{\prime} N_{c}^{\prime}+\mathrm{q} N_{q}^{\prime}+0.5 \gamma^{\prime} \mathrm{B} N_{\gamma}^{\prime}$
$\mathrm{q}_{\mathrm{ult}}=0.867 \mathrm{c}^{\prime} N_{c}^{\prime}+\mathrm{q} N_{q}^{\prime}+0.3 \gamma^{\prime} \mathrm{B} N_{\gamma}^{\prime}$

The values of Modified $N_{c}^{\prime}, N_{q}^{\prime}$, and N_{γ}^{\prime}, are calculated using the equations for $\mathrm{N}_{\mathrm{q}}, \mathrm{N}_{\mathrm{c}}$, and N_{γ}, respectively (Das, 2007) by replacing the effective internal angle of friction $\left(\phi^{\prime}\right)$ by a value equal to: $\tan ^{-1}\left(\frac{2}{3} \tan \phi^{\prime}\right)$.

Table 2.2: Terzaghi’s Bearing Capacity Factors (Das and Sobhan, 2018)

\emptyset^{\prime}	$\mathbf{N}_{\mathbf{c}}$	$\mathbf{N}_{\mathbf{q}}$	$\mathrm{N}_{\boldsymbol{\gamma}}{ }^{\text {a }}$	\emptyset^{\prime}	N_{c}	N_{q}	$\mathrm{N}_{\boldsymbol{\gamma}}{ }^{\text {a }}$	\emptyset^{\prime}	$\mathbf{N}_{\mathbf{c}}$	N_{q}	$\mathrm{N}_{\boldsymbol{\gamma}}{ }^{\text {a }}$
0	5.70*	1.00	0.00	17	14.60	5.45	2.18	34	52.64	36.50	38.04
1	6.00	1.10	0.01	18	15.12	6.04	2.59	35	57.75	41.44	45.41
2	6.30	1.22	0.04	19	16.56	6.70	3.07	36	63.53	47.16	54.36
3	6.62	1.35	0.06	20	17.69	7.44	3.64	37	70.01	53.80	65.27
4	6.97	1.49	0.10	21	18.92	8.26	4.31	38	77.50	61.55	78.61
5	7.34	1.64	0.14	22	20.27	9.19	5.09	39	85.97	70.61	95.03
6	7.73	1.81	0.20	23	21.75	10.23	6.00	40	95.66	81.27	115.31
7	8.15	2.00	0.27	24	23.36	11.40	7.08	41	106.81	93.85	140.51
8	8.60	2.21	0.35	25	25.13	12.72	8.34	42	119.67	108.75	171.99
9	9.09	2.44	0.44	26	27.09	14.21	9.84	43	134.58	126.50	211.56
10	9.61	2.69	0.56	27	29.24	15.90	11.60	44	151.95	147.74	261.60
11	10.16	2.98	0.69	28	31.61	17.81	13.70	45	172.28	173.28	325.34
12	10.76	3.29	0.85	29	34.24	19.98	16.18	46	196.22	204.19	407.11
13	11.41	3.63	1.04	30	37.16	22.46	19.13	47	224.55	241.80	512.84
14	12.11	4.02	1.26	31	40.41	25.28	22.65	48	258.28	287.85	650.67
15	12.86	4.45	1.52	32	44.04	28.52	26.87	49	298.71	344.63	831.99
16	13.68	4.92	1.82	33	48.09	32.23	31.94	50	347.50	415.14	1072.80

Note: ${ }^{\mathbf{a}}$ The $\mathbf{N}_{\gamma}{ }^{a}$ values are from Kumbhojkar (1993);

* $\mathbf{N}_{\mathbf{c}}=\mathbf{1} .5 \boldsymbol{\pi}+\mathbf{1}$ [See Terzaghi (1943), pg. 127 (Bowles, 1997)], and

The values for $\mathbf{N}_{\boldsymbol{\gamma}}$ for ϕ of $0^{\circ}, 34^{\circ}$, and 48° are original Terzaghi values and used to back-compute $\mathbf{K}_{\mathbf{p} \gamma}$.

Table 2.3: Terzaghi’s Modified Bearing Capacity Factors (Das, 2017)

\emptyset^{\prime}	N_{c}^{\prime}	N_{q}^{\prime}	N_{γ}^{\prime}	\emptyset^{\prime}	N_{c}^{\prime}	N_{q}^{\prime}	N_{γ}^{\prime}	\emptyset^{\prime}	N_{c}^{\prime}	N_{q}^{\prime}	N_{γ}^{\prime}
0	5.70	1.00	0.00	17	10.47	3.13	0.76	34	23.72	11.67	7.22
1	5.90	1.07	0.005	18	10.90	3.36	0.88	35	25.18	12.75	8.35
2	6.10	1.14	0.02	19	11.36	3.61	1.03	36	26.77	13.97	9.41
3	6.30	1.22	0.04	20	11.85	3.88	1.12	37	28.51	15.32	10.90
4	6.51	1.30	0.055	21	12.37	4.17	1.35	38	30.43	16.85	12.75
5	6.74	1.39	0.074	22	12.92	4.48	1.55	39	32.53	18.56	14.71
6	6.97	1.49	0.10	23	13.51	4.82	1.74	40	34.87	20.50	17.22
7	7.22	1.59	0.128	24	14.14	5.20	1.97	41	37.45	22.70	19.75
8	7.47	1.70	0.16	25	14.80	5.60	2.25	42	40.33	25.21	22.50
9	7.74	1.82	0.20	26	15.53	6.05	2.59	43	43.54	28.06	26.25
10	8.02	1.94	0.24	27	16.30	6.54	2.88	44	47.13	31.34	30.40
11	8.32	2.08	0.30	28	17.13	7.07	3.29	45	51.17	35.11	36.00
12	8.63	2.22	0.35	29	18.03	7.66	3.76	46	55.73	39.48	41.70
13	8.96	2.38	0.42	30	18.99	8.31	4.39	47	60.91	44.45	49.30
14	9.31	2.55	0.48	31	20.03	9.03	4.83	48	66.80	50.46	59.25
15	9.67	2.73	0.57	32	21.16	9.82	5.51	49	73.55	57.41	71.45
16	10.06	2.92	0.67	33	22.39	10.69	6.32	50	81.31	65.50	85.75

2.6.1.3 Punching shear failure case

This failure type is normally seen in relatively loose sand with relative density less than 35% or clays of soft consistency (loose and soft soils), soil of very high compressibility and in deeper elevations. Punching shear design is often undertaken in structural design calculations not under geotechnical designs (Das, 2016).

2.6.2 Meyerhof's bearing capacity method

Meyerhof (1951, 1963) proposed two general equations for bearing capacity calculation similar to Terzaghi's but introducing further foundation shape coefficients $\left(s_{q}\right)$ that multiplies the N_{q} factor, depth factors $\left(d_{i}\right)$ and inclination factors $\left(i_{i}\right)$ for cases where the load line is inclined to the vertical.

2.6.2.1 Meyerhof's equations

For the case when the resultant load at the bearing level $\left(Q_{b}\right)$ is vertical with no horizontal components, then Meyerhof's vertical load equation is:
$Q_{b}=c N_{c} S_{c} d_{c}+q_{o} N_{q} S_{q} d_{q}+0.5 \gamma B N_{\gamma} S_{\gamma} d_{\gamma}$
For the case when the resultant load at the bearing level $\left(Q_{b}\right)$ is inclined from vertical and can be resolved into vertical and horizontal components, with the horizontal component of load in the direction of the width of the footing, then Meyerhof's Inclined Load equation is given as:
$Q_{b}=c N_{c} d_{c} i_{c}+q_{o} N_{q} d_{q} i_{q}+0.5 \gamma B N_{\gamma} d_{\gamma} i_{\gamma}$
Where:
$\mathrm{Q}_{\mathrm{b}}=$ the resultant load at the bearing level; and $\mathrm{c}=$ cohesion of soil
$q_{o}=$ the surcharge pressure; and $\gamma=$ unit weight of soil
$\mathrm{N}_{\mathrm{c}}, \mathrm{N}_{\mathrm{q}}$, and $\mathrm{N}_{\gamma}=$ Meyerhof's bearing capacity factors
$\mathrm{N}_{\mathrm{q}}=e^{(\pi \tan \varnothing)} \tan ^{2}(45+\emptyset / 2) ;$ and $\mathrm{N}_{\mathrm{c}}=\cot \emptyset\left(\mathrm{N}_{\mathrm{q}}-1\right)$
$\mathrm{N}_{\gamma}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \tan (1.4 \varnothing) ; \mathrm{S}_{\mathrm{c}}, \mathrm{S}_{\mathrm{q}}$, and $\mathrm{S}_{\gamma}=$ Shape factors;
$\mathrm{d}_{\mathrm{c}}, \mathrm{d}_{\mathrm{q}}$, and $\mathrm{d}_{\gamma}=$ Depth factors; and $\mathrm{i}_{\mathrm{c}}, \mathrm{i}_{\mathrm{q}}$, and $\mathrm{i}_{\gamma}=$ Inclined load factors

Table 2.4: Meyerhof's factors vs friction angle (Meyerhof, 1951 and 1963)

Friction Angle	Shape Factor	Depth Factor	Inclined Load Factors
Any ϕ	$\mathrm{S}_{\mathrm{c}}=1+0.2 K_{p}\left(\frac{B}{L}\right)$	$\mathrm{d}_{\mathrm{c}}=1+0.2 \sqrt{K_{p}}\left(\frac{D}{B}\right)$	$\mathrm{i}_{\mathrm{c}}=\left(1-\theta / 90^{\circ}\right)^{2}$ $\mathrm{i}_{\mathrm{q}}=\left(1-\theta / 90^{\circ}\right)^{2}$
$\phi=0$	$\mathrm{~S}_{\mathrm{q}}=\mathrm{S}_{\gamma}=1$	$\mathrm{~d}_{\mathrm{q}}=\mathrm{d}_{\gamma}=1$	$\mathrm{i}_{\gamma}=1$
$\phi \geq 10^{\circ}$	$\mathrm{S}_{\mathrm{q}}=1+0.1 K_{p}\left(\frac{B}{L}\right)$	$\mathrm{d}_{\mathrm{q}}=1+0.1 \sqrt{K_{p}}\left(\frac{D}{B}\right)$	$\mathrm{i}_{\gamma}=(1-\theta / \varnothing)^{2}$
	$\mathrm{~S}_{\gamma}=1+0.1 K_{p}\left(\frac{B}{L}\right)$	$\mathrm{d}_{\gamma}=1+0.1 \sqrt{K_{p}}\left(\frac{D}{B}\right)$	

Where:
$D=$ depth of the footing; $B=$ width of the footing
$L=$ length of the footing; and $\varnothing=$ soil friction angle
$K_{p}=\tan ^{2}(45+\varnothing / 2)=$ passive pressure coefficient
$\theta=\tan ^{-1}\left(Q_{h} / Q_{v}\right)=$ angle of the load in degrees

In the above equations involving B and L , for eccentricity case at the bearing elevation, $B_{e f f}$ is used instead of B [where $\left(B_{e f f}=B-2 e_{B}\right)$], and $L_{e f f}$ instead of L [where $\left.\left(L_{e f f}=L-2 e_{L}\right)\right]$. However, in unusual cases where $\left(L-2 e_{L}\right)<$ $\left(B-2 e_{B}\right)$, use $\left(B_{e f f}=L-2 e_{L}\right)$ and $\left(L_{e f f}=B-2 e_{B}\right)$.

2.6.3 Brinch Hansen's bearing capacity method

Brinch Hansen (1970) provided equations to estimate limit bearing capacity for two separate cases of strength parameters namely that $\phi>0$ (Case 1), and $\phi=0$ (Case 2) for undrained clay (Das, 2007; Das and Sobhan, 2018).

In addition, for each of these cases there are two separate subcases:
i) Either no horizontal load component $\left(Q_{t r}\right)$ or there is a horizontal load component and it is in the direction of the width of the footing $\left(Q_{t r, B}\right)$.
ii) There is a horizontal load component in the direction of the length of the footing $\left(Q_{t r, L}\right)$, or in both directions of width and length of the footing $\left[\left(Q_{t r, B}\right)\right.$ and $\left.\left(Q_{t r, L}\right)\right]$.

In all cases, the limit load that can be carried at the bearing level is given by:
$Q_{b L}=q_{b L} x A_{f}$
a) Case $1(\phi>0)$

For Subcase (a) where there is no $\left(Q_{t r}\right)$ or where there is only $\left(Q_{t r, B}\right)$:
$q_{b L}=c N_{c} S_{c} d_{c} i_{c} b_{c} g_{c}+q_{o} N_{q} S_{q} d_{q} i_{q} b_{q} g_{q}+0.5 \gamma B N_{\gamma} S_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma}$
Where:
$q_{o}=$ effective stress at the bearing level for an effective stress analysis, or it is the total stress at the bearing level for a total stress analysis.
$\mathrm{N}_{\mathrm{c}}, \mathrm{N}_{\mathrm{q}}$, and $\mathrm{N}_{\gamma}=$ The same as Meyerhof's; $\mathrm{S}_{\mathrm{c}}, \mathrm{S}_{\mathrm{q}}$, and $\mathrm{S}_{\gamma}=$ Shape factors
$\mathrm{d}_{\mathrm{c}}, \mathrm{d}_{\mathrm{q}}$, and $\mathrm{d}_{\gamma}=$ Depth factors; $\mathrm{i}_{\mathrm{c}}, \mathrm{i}_{\mathrm{q}}$, and $\mathrm{i}_{\gamma}=$ Inclined load factors
$\mathrm{g}_{\mathrm{c}}, \mathrm{g}_{\mathrm{q}}$, and $\mathrm{g}_{\gamma}=$ Ground factors; $\mathrm{N}_{\mathrm{q}}=e^{(\pi \tan \varnothing)} \tan ^{2}(45+\emptyset / 2)$;
$\mathrm{N}_{\mathrm{c}}=\cot \varnothing\left(\mathrm{N}_{\mathrm{q}}-1\right) ;$ and $\mathrm{N}_{\gamma}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \tan (1.4 \emptyset)$
$\mathrm{S}_{\mathrm{c}}=1+\cos \emptyset\left(\frac{N_{q}}{N_{c}} x \frac{B}{L}\right) ; \mathrm{S}_{\mathrm{q}}=1+\sin \emptyset\left(\frac{B}{L}\right) ;$ and $\mathrm{S}_{\gamma}=1-0.4\left(\frac{B}{L}\right) \geq 0.6$
$\mathrm{d}_{\mathrm{c}}=1+2(1-\sin \emptyset)^{2}\left(\frac{N_{q}}{N_{c}} x \frac{D}{B}\right)$ for $\frac{D}{B} \leq 1$
$\mathrm{d}_{\mathrm{c}}=1+2(1-\sin \emptyset)^{2}\left(\frac{N_{q}}{N_{c}}\right) \tan ^{-1}\left(\frac{D}{B}\right)$ for $\frac{D}{B}>1$
$\mathrm{d}_{\mathrm{q}}=1+2 \tan \emptyset(1-\sin \emptyset)^{2}\left(\frac{D}{B}\right)$ for $\frac{D}{B} \leq 1$
$\mathrm{d}_{\mathrm{q}}=1+2 \tan \emptyset(1-\sin \emptyset)^{2} \tan ^{-1}\left(\frac{D}{B}\right)$ for $\frac{D}{B}>1$; and $\mathrm{d}_{\gamma}=1$
$\mathrm{i}_{\mathrm{q}}=\left(1-\frac{0.5 Q_{t r}}{Q_{a x}+A C_{a} \cot \varnothing}\right)^{0.5} \geq 0 ;$ and $\mathrm{i}_{\gamma}=\left(1-\frac{0.7 Q_{t r}}{Q_{a x}+A C_{a} \cot \phi}\right)^{0.5} \geq 0$
$\mathrm{i}_{\mathrm{c}}=\left[\mathrm{i}_{\mathrm{q}}-\frac{1-\mathrm{i}_{\mathrm{q}}}{N_{q}-1}\right]$
$\mathrm{b}_{\mathrm{q}}=\mathrm{e}^{-\left[0.0349066 \times a_{b} \tan \varnothing\right]}$; and $\mathrm{b}_{\gamma}=\mathrm{e}^{-\left[0.0471239 \times a_{b} \tan \varnothing\right]}$
$\mathrm{g}_{\mathrm{q}}=\mathrm{g}_{\gamma}=\left[1-0.5 \tan \left(a_{g}\right)\right]^{5} ;$ and $\mathrm{g}_{\mathrm{c}}=\left[\mathrm{g}_{\mathrm{q}}-\frac{1-\mathrm{g}_{\mathrm{q}}}{N_{q}-1}\right]$

b) Case $2(\phi=0)$

For Subcase (a) where there is no $\left(Q_{t r}\right)$ or where there is only $\left(Q_{t r, B}\right)$:
$q_{b L}=(\pi+2) S_{u}\left(1+S_{s u}+d_{s u}-i_{s u}-b_{s u}-g_{s u}\right)+q_{o}$
Where:
$q_{o}=$ total effective stress at the bearing level
$S_{s u}=0.2\left(\frac{B}{L}\right) ;$ and $d_{s u}=0.4\left(\frac{D}{B}\right)$ for $D \leq B$
$d_{s u}=0.4 \tan ^{-1}\left(\frac{D}{B}\right)$ for $D>B ;$ and $i_{s u}=0.5-0.5 \sqrt{1-\frac{Q_{t r}-B}{C_{a} A_{f}}}$
$C_{a}=$ adhesive stress acting on base of footing in the range of 0.5 to 1.0 of S_{u}.

For a rough base, $C_{a}=S_{u}$.
$\mathrm{b}_{\mathrm{su}}=\frac{2 a_{b}(\mathrm{rad})}{\pi+2}=\frac{a_{b}(\text { degrees })}{147.3} ;$ and $\mathrm{g}_{\mathrm{su}}=\frac{2 a_{g}(\mathrm{rad})}{\pi+2}=\frac{a_{g}(\text { degrees })}{147.3}$

Note:

- For both Cases 1 and 2 above under Subcase (b), where there is only $\left(Q_{t r, L}\right)$ or both $\left(Q_{t r, B}\right)$ and $\left(Q_{t r, L}\right)$; the design engineer ought to check for $q_{b L}$ separately in the directions of the width and length of footing, noting that $q_{b L}$ is equal to the smaller of the two values.
- Also in the above equations involving B and L, for cases of eccentricity at the bearing elevation, $B_{\text {eff }}$ is used instead of B [where $B_{\text {eff }}=B-2 e_{B}$], and $L_{e f f}$ is used instead of L [where $L_{e f f}=L-2 e_{L}$].

However, in unusual cases where $\left(L-2 e_{L}\right)<\left(B-2 e_{B}\right)$, one must use $B_{e f f}=L-2 e_{L}$ and $L_{e f f}=B-2 e_{B}$.

- Although Hansen's equation considers issues of base tilting and footings on slopes, can be used for both shallow and deep foundations, and gives better correlation than the other methods in full-scale footing tests, Terzaghi's is the most widely used and preferred method among many geotechnical engineers because of its simplicity and it gives the exact solution without superposition approximation, in which the bearing capacity factor is dependent on the dimensionless parameter (λ) and the friction angle (\varnothing) (Sun et al., 2013).

2.6.4 Allowable bearing capacity evaluation from SPT Test

2.6.4.1 Terzaghi's approach

The allowable bearing capacities, $\mathrm{q}_{\text {all }}$ can be computed using the corrected SPT $\mathrm{N}^{\prime} 55$ values from Terzaghi's formula (1967) for cohesive soils.

The following assumptions are normally made in the calculation of bearing capacity based on corrected SPT N-values:

- The Peck et al. (1967) relationship between N -values and unconfined compressive strength is valid (Published by Terzaghi and peck, 1967).
- The maximum allowable settlement in cohesive soils is 25 mm .
- The design N -values are derived from the statistical average of all values within a depth zone equal to the footing width below the founding depth. The equations used to evaluate the bearing capacity for cohesive soils are:
- Unconfined compressive strength $\left(q_{u}\right) ; q_{u}=13.1 \times \operatorname{corrected} \mathrm{N}$ - value
- Corrected N -value ($\mathrm{N}^{\prime}{ }_{55}$); $\mathrm{N}^{\prime}{ }_{55}=\mathrm{C}_{\mathrm{N}} \times \mathrm{N} \times \eta_{1} \times \eta_{2} \times \eta_{3} \times \eta_{4}$
- Undrained Cohesion (c_{u}); $\mathrm{c}_{\mathrm{u}}=\mathrm{q}_{\mathrm{u}} / 2$
- Ultimate bearing capacity (qult); $\mathrm{q}_{\mathrm{ult}}=5.14 \times \mathrm{c}_{\mathrm{u}}$
- Factor of Safety (FS); FS = 3.0
- Allowable bearing capacity $\left(\mathrm{q}_{\text {all }}\right)=\frac{\mathrm{q}_{\mathrm{ult}}}{\mathrm{FS}}=\frac{\text { Ultimate bearing capacity }}{\mathrm{FS}}$
- $\mathrm{C}_{\mathrm{N}}=$ adjustment for overburden pressure, $\left(\frac{\mathrm{p}^{\prime \prime}{ }_{o}{ }_{\mathrm{p}_{0}}{ }^{\frac{1}{2}}}{}{ }^{\frac{1}{2}}\right.$

The adjustment for effective overburden pressure $\left(\mathrm{C}_{\mathrm{N}}\right)$ is normally computed using Liao and Whitman’s formula (1986) below (Martin and Lew, 1999):

- $\mathrm{C}_{\mathrm{N}}=\left(\frac{\mathrm{p}^{\prime \prime}{ }_{\mathrm{o}}}{\mathrm{p}^{\prime}{ }_{\mathrm{o}}}\right)^{\frac{1}{2}}=\left(\frac{95.76}{\mathrm{p}_{\mathrm{o}}^{\prime}}\right)^{\frac{1}{2}}$ where $0.4 \leq \mathrm{C}_{\mathrm{N}} \leq 1.7$

Where:

- $\mathrm{p}^{\prime \prime}{ }_{\mathrm{o}}=$ reference overburden pressure (95.76 KPa or $1.0 \mathrm{~kg} / \mathrm{cm}^{2}$)
- $\mathrm{p}^{\prime}{ }_{\mathrm{o}}=$ overburden pressure $=($ Effective unit weight x depth $)$
- $\eta_{1}=\mathrm{E}_{\mathrm{r}} / \mathrm{E}_{\mathrm{rb}}$; and $\gamma^{\prime}=$ effective unit weight of soil
- $\mathrm{E}_{\mathrm{r}}=$ the average energy ratio that depends on the drill system $=45$
- $\mathrm{E}_{\mathrm{rb}}=$ the standard energy ratio $=55 ; \eta_{2}=$ rod length correction
- $\eta_{3}=$ sampler correction; and $\eta_{4}=$ borehole diameter correction

In the geotechnical design calculations of bearing capacity from SPT tests, the following equations are essential namely:
$\Rightarrow \mathrm{N}^{\prime}{ }_{55}=\left(\frac{\mathrm{p}^{\prime \prime}{ }_{\mathrm{o}}}{\gamma^{\prime} \times \text { depth }}\right)^{\frac{1}{2}} \times \mathrm{N} \times \frac{\mathrm{E}_{\mathrm{r}}}{\mathrm{E}_{\mathrm{rb}}} \times \eta_{2} \times \eta_{3} \times \eta_{4}$
$\Rightarrow \mathrm{q}_{\mathrm{ult}}=5.14 \times \frac{\mathrm{q}_{\mathrm{u}}}{2}=\left[5.14 \times \frac{13.1 \times \mathrm{N}^{\prime}{ }_{55}}{2}\right]$
$\Rightarrow \mathrm{q}_{\text {all }}=\frac{\mathrm{q}_{\mathrm{ult}}}{\mathrm{FS}}=\left(5.14 \mathrm{xc}_{\mathrm{u}}\right) / F S=\left\{5.14 \times\left[\frac{\left(13.1 \mathrm{xN}^{\prime}{ }_{55}\right)}{2}\right]\right\} / F S$

However, for field SPT N-values greater than 50, an N-value of 80 is normally assumed in N_{55} computation (Bowles, 1997; Bryne and Berry, 2008).

2.6.4.2 Bowles's approach based on Meyerhof (1963)

Although, there are several reliable methods for estimating the soil's bearing capacity from the SPT tests, one of the most commonly used method is that of Bowles (1997) using corrected SPT $\mathrm{N}^{\prime}{ }_{55}$ values to calculate the allowable bearing capacities ($q_{\text {all }}$) as shown below:
$\mathrm{q}_{\mathrm{a}}=\left\{\frac{\mathrm{N}}{\mathrm{F}_{2}}\left[\frac{\left(\mathrm{~B}+\mathrm{F}_{3}\right)}{\mathrm{B}}\right]^{2} x \mathrm{~K}_{\mathrm{d}}\right\}$ for $\mathrm{B}>\mathrm{F}_{4}$
$\mathrm{q}_{\mathrm{a}}=\left\{\frac{\mathrm{N}}{\mathrm{F}_{1}} x \mathrm{~K}_{\mathrm{d}}\right\}$ for $\mathrm{B} \leq \mathrm{F}_{4}$
Where:
$\mathrm{N}=$ Corrected $\mathrm{SPT} \mathrm{N}^{\prime}{ }_{55}$ values; and $\mathrm{N}^{\prime}{ }_{55}=\operatorname{adjusted} \mathrm{N}-$ values
$B=$ Width of foundation; and $D=$ Depth of foundation
$\mathrm{q}_{\mathrm{a}}=q_{\text {all }}=$ Allowable bearing pressure for settlement limited to 25 mm
$\mathrm{K}_{\mathrm{d}}=1+\frac{0.33 \mathrm{D}}{\mathrm{B}}<1.33 ; \mathrm{F}_{1}=0.05 ; \mathrm{F}_{2}=0.08 ; \mathrm{F}_{3}=0.3 ;$ and $\mathrm{F}_{4}=1.2$
The N -values are usually converted to $\mathrm{N}^{\prime}{ }_{55}$ standard energy ratio value according to Bowles (Bowles, 1997) using the equation below:
$\mathrm{N}_{55}^{\prime}=\mathrm{C}_{\mathrm{N}} \times \mathrm{N} \times \eta_{1} \times \eta_{2} \times \eta_{3} \times \eta_{4}$
Where:
$\mathrm{C}_{\mathrm{N}}=$ adjustment for overburden pressure (Liao and Whitman, 1986)

$\mathrm{p}^{\prime}{ }_{\mathrm{o}}=$ overburden pressure
$\mathrm{p}^{\prime \prime}{ }_{\mathrm{o}}=$ reference overburden pressure (95.76 KPa or $1.0 \mathrm{~kg} / \mathrm{cm}^{2}$)
$\eta_{1}=E_{r} / E_{r b}$
$\mathrm{E}_{\mathrm{r}}=$ the average energy ratio that depends on the drill system $=45$
$\mathrm{E}_{\mathrm{rb}}=$ the standard energy ratio $=55$
$\eta_{2}=$ rod length correction; $\eta_{3}=$ sampler correction (1.00 in our case)
$\eta_{4}=$ borehole diameter correction (1.00 in our case)

Bowles's (1982) approach is based on Meyerhof's (1963) equations to evaluate bearing capacities from SPT results, and it uses an increase of 50% basing on the accumulation of field observations to compute the foundation's allowable bearing capacity ($q_{\text {all }}$), based on a unit breadth as shown below:
$\mathrm{q}_{\text {all }}=0.73 \times \mathrm{N}^{\prime \prime} \times \mathrm{R}_{\mathrm{D}_{1}} \times \mathrm{S}_{\mathrm{a}}\left[\mathrm{kN} / \mathrm{m}^{2}\right.$ for $\left.\mathrm{B} \leq 1.2 \mathrm{~m}\right]$
$q_{\text {all }}=0.48 \times \mathrm{N}^{\prime \prime} \times R_{D_{2}} \times\left(\frac{B+0.3}{B}\right)^{2} \times S_{a}[$ for $B>1.2 m]$
$R_{D_{1}}=1+0.2\left(\frac{D_{f}}{B}\right) \leq 1.2$ for $\emptyset=0$
$R_{D_{2}}=1+0.1\left(\frac{D_{f}}{B}\right) \leq 1.2$ for $\emptyset=0$
Where:
$\mathrm{N}^{\prime \prime}=$ Corrected SPT N-value; and $S_{a}=$ Allowable settlement (25 mm)
$\mathrm{R}_{\mathrm{D}_{1}}$ and $\mathrm{R}_{\mathrm{D}_{2}}=$ Depth reduction factors (Meyerhof's depth factor)
$D_{f}=$ Foundation depth (or test depth in metres)

B = Foundation Breadth (in metres); and
\varnothing = Internal angle of soil friction in degrees

For the description of the consistency of fine-grained soils and relative strength of coarse-grained soils relative to SPT N-values for blows per 300 mm , and/or the need for adjustments factors in the computation of the $\mathrm{N}^{\prime}{ }_{55}$ (adjusted SPT N values), the tables below may be used in the interpretations thereof:

Table 2.5: Consistency table for fine-grained soils (BS 5930: 1999)

Description	Unconfined Compressive Strength (kPa)	N-value
Very soft	Less than 25	Less than 2
Soft	25 to 50	2 to 5
Firm	50 to 100	5 to 10
Stiff	100 to 200	10 to 20
Very stiff	200 to 380	20 to 40
Hard	Over 380	Over 40

Table 2.6: Relative strength of coarse-grained soils (BS 5930: 1999)

S/No.	Description	N-value
1	Very loose	Less than 4
2	Loose	4 to 10
3	Compact/Medium-dense	10 to 30
4	Dense	30 to 50
5	Very Dense	Over 50

Table 2.7a: Adjustment factors for corrected $\mathrm{N}^{\prime}{ }_{55}$ values (Bowles, 1997)

Hammer Efficiency (\%) for $\boldsymbol{\eta}_{\mathbf{1}}$ (Average Energy Ratio, Er)				
Country	Donut		Safety	
	Rope-Pulley	Trip	Rope-Pulley	Trip/Auto
North America	45	-	$70-80$	$80-100$
Japan	67	78	-	-
United Kingdom	-	-	50	60
China/Africa	50	60	-	-

Standard Energy Ratio, Erb	
Erb	
50 to 55 (Use 55)	Schmertmann [in Robertson et al. (1983)]
60	Seed et al. (1985); Skempton (1986)
70 to 80 (Use 70)	Riggs (1986)

	Rod Length corrections, $\boldsymbol{\eta}_{\mathbf{2}}$				
Length	$\boldsymbol{\eta}_{\mathbf{2}}$	Length	$\boldsymbol{\eta}_{\mathbf{2}}$		
More than 10 m	1.00	$4-\mathrm{-}$			
$6-10 \mathrm{~m}$	0.95	$0-\mathrm{m}$	0.85		

Sample corrections, $\boldsymbol{\eta}_{\mathbf{3}}$			
With Liner	$\boldsymbol{\eta}_{\mathbf{3}}$	Without Liner	$\boldsymbol{\eta}_{\mathbf{3}}$
Dense sand	0.80		1.00
Clay	0.80	All soil types	
Loose sand	0.90		

Table 2.7b: Adjustment factors for corrected $\mathrm{N}^{\prime} 55$ values (Bowles, 1997)

Borehole diameter corrections, $\boldsymbol{\eta}_{\mathbf{3}}$	
Hole diameter	$\boldsymbol{\eta}_{\mathbf{3}}$
$50-120 \mathrm{~mm}$	1.00
150 mm	1.05
200 mm	1.15

2.6.5 Soil bearing capacity evaluation based on DPL test

2.6.5.1 The Dutch Formula

The most common formula for calculating the soil's dynamic point resistance and/or soil bearing capacity (q) and resistance value $\left(r_{d}\right)$ from the Dynamic Penetration Light test (DPL) is the Dutch formula (Sanglerat, 1972; Atkinson, 2004; Khodaparast et al., 2015) as given below:
$\mathrm{q}=r_{d}\left[\frac{M}{(M+P)}\right]=\left[\frac{\mathrm{E}}{\mathrm{A} \times \mathrm{H}}\right] \times\left[\frac{\mathrm{M}}{(\mathrm{M}+\mathrm{P})}\right]$
Where:

- $\mathrm{q}=$ the Soil bearing capacity
- $\mathrm{E}=$ the energy in Joules $\Rightarrow \mathrm{E}=\mathrm{Mgh}$
$\Rightarrow \mathrm{E}=$ Hammer mass x gravitational acceleration x falling height
- $\mathrm{A}=$ the area of the cone $=0.001 \mathrm{~m}^{2}$
- $\mathrm{H}=$ depth of penetration (m);
- $\mathrm{M}=$ mass of hammer $=10.252 \mathrm{~kg}$
- $\mathrm{P}=$ the mass of the assembly in kilograms; whereby the mass of DPL assembly is 6.714 kg , and mass of each rod is 2.86 kg .
$\Rightarrow \mathrm{P}=$ (Mass of Anvil) + (Mass of rods)
$\mathrm{r}_{\mathrm{d}}=\frac{\mathrm{M}_{1} \mathrm{gh}}{\mathrm{Ae}}=\left[\frac{\mathrm{M}_{1} \mathrm{gh}}{A x\left(\frac{0.1}{N_{10}}\right)}\right]=\frac{E}{A x H}$
Where:
- M_{1} = mass of the hammer; and $\mathrm{N}_{10}=$ blows per 10 cm penetration
- $\mathrm{e}=$ penetration rate $=0.1 / \mathrm{N}_{10}$
- $r_{d}=$ unit point resistance; and $q_{d}=$ dynamic point resistance

With respect to the soil consistency interpretations, the N_{10} readings can be interpreted to give the respective granular and fine-grained soil consistencies as defined in the tables below:

Table 2.8: Consistency of granular soils from the DPL test (Nilsson, 2012)

Blows, $\mathbf{N}_{\mathbf{1 0}}$	Consistency	Blows, $\mathbf{N}_{\mathbf{1 0}}$	Consistency
Less than 1	Very Loose	$7-83$	Medium Dense
$1-7$	Loose	Over 83	Dense

Table 2.9: Consistency of fine soils from the DPL test (Nilsson, 2012)

Blows, $\mathbf{N}_{\mathbf{1 0}}$	Consistency	Blows, $\mathbf{N}_{\mathbf{1 0}}$	Consistency
Less than 3	Very Soft	$13-22$	Stiff
$3-6$	Soft	$23-45$	Very Stiff
$6-12$	Medium	Over 45	Hard

2.6.6 Soil bearing capacity evaluation based on Shear tests

2.6.6.1 Terzaghi’s formula

Terzaghi's equation for computing bearing capacity either in general shear or local shear failure modes is shown below (Das, 2016; Das and Sobhan, 2018):
$\mathrm{q}_{\text {all }}=\frac{\mathrm{q}_{\mathrm{ult}}}{\text { FOS }}=\left[\mathrm{cN}_{\mathrm{c}} S_{c}+0.5 \gamma_{\mathrm{t}} \mathrm{BN}_{\gamma} S_{\gamma}+\gamma_{\mathrm{t}} \mathrm{D}_{\mathrm{f}} \mathrm{N}_{\mathrm{q}}\right] / F O S$

Where:
$\mathrm{q}_{\mathrm{ult}}=\left[\mathrm{cN}_{\mathrm{c}} S_{c}+0.5 \gamma_{\mathrm{t}} \mathrm{BN}_{\gamma} S_{\gamma}+\gamma_{\mathrm{t}} \mathrm{D}_{\mathrm{f}} \mathrm{N}_{\mathrm{q}}\right]$; and $\mathrm{N}_{\mathrm{q}}=\left[\frac{a^{2}}{a \cos ^{2}(45+\emptyset / 2)}\right]$
$a=\left[e^{(0.75 \pi-\varnothing / 2) \tan \phi}\right] ; \mathrm{N}_{\mathrm{c}}=\left[\left(\mathrm{N}_{\mathrm{q}}-1\right) \cot \emptyset\right] ; \mathrm{N}_{\gamma}=\frac{\tan \emptyset}{2}\left(\frac{K_{p r}}{\cos ^{2} \emptyset}-1\right)$
Where:
$\mathrm{q}_{\text {all }}=$ ultimate bearing capacity
$B \quad=$ width of the strip footing; $\mathrm{L}=$ length of the strip footing
$\gamma_{t} \quad=$ total unit weight of the soil; N_{c}, N_{γ} and $N_{q}=$ bearing capacity factors
$D_{f} \quad=$ vertical distance from ground surface to bottom of the strip footing
$c \quad=$ cohesion of the soil; and FOS = Factor of Safety (Assumed as 3)

Table 2.10: Shape factors for Terzaghi's equation (Bowles, 1997)

For:	Strip foundation	Round foundation	Square foundation
$S_{C}=$	1.0	1.3	1.3
$S_{\gamma}=$	1.0	0.6	0.8

2.6.6.2 Meyerhof's formula

These Meyerhof's equations (1963) are for bearing capacity calculation:

$$
\begin{align*}
& q_{u l t}=c N_{c} S_{c} d_{c}+q_{o} N_{q} S_{q} d_{q}+0.5 \gamma B N_{\gamma} S_{\gamma} d_{\gamma} \text { (Vertical Load) } \tag{2.27}\\
& q_{u l t}=c N_{c} d_{c} i_{c}+q_{o} N_{q} d_{q} i_{q}+0.5 \gamma B N_{\gamma} d_{\gamma} i_{\gamma} \text { (Inclined Load) } \tag{2.28}
\end{align*}
$$

Where: $\mathrm{N}_{\mathrm{q}}=e^{(\pi \tan \varnothing)} \tan ^{2}\left(45+\frac{\phi}{2}\right) ; \mathrm{N}_{\mathrm{c}}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \cot \varnothing$; and $\mathrm{N}_{\gamma}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \tan (1.4 \varnothing)$

2.6.6.3 Hansen's formula

These equations of Hansen (1970) are for bearing capacity calculation:

$$
\begin{align*}
& q_{u l t}=c N_{c} S_{c} d_{c} i_{c} b_{c} g_{c}+q_{o} N_{q} S_{q} d_{q} i_{q} b_{q} g_{q}+0.5 \gamma B N_{\gamma} S_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} \tag{2.29}\\
& q_{u l t}=(\pi+2) S_{u}\left(1+S_{s u}+d_{s u}-i_{s u}-b_{s u}-g_{s u}\right)+q_{o} \tag{2.30}
\end{align*}
$$

Where: $\mathrm{N}_{\mathrm{q}}=e^{(\pi \tan \varnothing)} \tan ^{2}(45+\emptyset / 2)=$ Meyerhof' s
$\mathrm{N}_{\mathrm{c}}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \cot \varnothing=$ Meyerhof's above; and $\mathrm{N}_{\gamma}=1.5\left(\mathrm{~N}_{\mathrm{q}}-1\right) \tan \emptyset$

2.6.6.4 Vesic's method

The Vesic $(1973,1975)$ procedure is essentially the same as Hansen's (1961) method with selective changes in N_{γ}, i_{i}, b_{i}, and g_{i}, but somewhat easier to use because Hansen's (1961) method uses the i terms in computing shape factors (S_{i}) whereas Vesic does not (Bowles, 1997; Das and Sobhan, 2018).
$q_{u l t}=c N_{c} S_{c} d_{c} i_{c} b_{c} g_{c}+q_{o} N_{q} S_{q} d_{q} i_{q} b_{q} g_{q}+0.5 \gamma B N_{\gamma} S_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma}$
$q_{u l t}=(\pi+2) S_{u}\left(1+S_{s u}+d_{s u}-i_{s u}-b_{s u}-g_{s u}\right)+q_{o}$
Where:
$\mathrm{N}_{\mathrm{q}}=e^{(\pi \tan \varnothing)} \tan ^{2}(45+\varnothing / 2) ;$ and $\mathrm{N}_{\mathrm{c}}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \cot \varnothing=$ Meyerhof's
$\mathrm{N}_{\gamma}=2\left(\mathrm{~N}_{\mathrm{q}}+1\right) \tan \emptyset$

2.6.7 Effect of water table on bearing capacity calculations

In developing bearing-capacity equations, Terzaghi (1943), Meyerhof (1951 and 1963), Hansen (1970), and Vesic $(1973,1975)$ among other researchers, assumed that groundwater table was located at a depth much greater than the width (B) of the footing. However, if the groundwater table is close to the footing, the equation (2.33) below (Terzaghi's bearing capacity equation) or related equations for square, rectangular and circular footings. Other researchers’ bearing capacity equations do require changes in the q and γ when calculating bearing capacities (Bowles, 1997; Das and Sobhan, 2018).
$q_{u l t}=q_{c}+q_{q}+q_{\gamma}=\left[c^{\prime} N_{c}+q N_{q}+\frac{1}{2} \gamma B N_{\gamma}\right]$

With reference to Figure 2.5 below, three different cases of groundwater table locations with respect to the footing bottom are given in Figure 2.5 below.

Figure 2.5: Effect of groundwater table on bearing capacity (Das and Sobhan, 2018)

a) Case 1 (Figure 2.5 (a))

If the groundwater table is located at a distance D above the bottom of footing, the magnitude of q is calculated as:
$q=q_{o}=\gamma\left(D_{f}-D\right)+\gamma^{\prime} D$
Where: $\gamma^{\prime}=\left(\gamma_{s a t}-\gamma_{\text {wet }}\right)$ and replaces γ in the bearing-capacity equations.
b) Case 2 (Figure 2.5 (b))

If the groundwater table coincides with the bottom of footing, the magnitude of q equal γD_{f}, and γ is replaced by γ^{\prime} in the bearing-capacity equations used.
$q=\gamma \mathrm{D}_{\mathrm{f}}$
c) Case 3 (Figure 2.5 (c))

When the groundwater table is at a depth D below the bottom of the footing, $q=$ γD_{f}. The magnitude of γ in the bearing capacity equations should be replaced by $\gamma_{a v}$ as shown below:

$$
\begin{align*}
& \gamma_{a v}=\frac{1}{B}\left[\gamma D+\gamma^{\prime}(B-D)\right] \text { for }(D \leq B) \tag{2.36}\\
& \gamma_{a v}=\gamma \text { for }(D>B) \tag{2.37}
\end{align*}
$$

CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter presents the methodologies of the geotechnical investigation testing programme, prescriptive geotechnical and structural foundation designs, and the static foundation load test method used.

Due to the complex nature of the soil-foundation relationship and subsequent loadsettlement response, a comprehensive geotechnical investigation was carried out to define the characteristics of the subsurface soil materials, ground water tables, estimate soil design parameters and the resistivity of the soils within the foundation sites that formed a basis for the prescriptive foundation design. This study was conducted on a total of four (4) foundation sites across the 400 kV and 132 kV overhead transmission lines of the Karuma Interconnection Project (KIP) in Uganda. The geotechnical investigation consisted of conventional sampling and laboratory testing as well as in-situ static foundation load testing. Conventional sampling methods included undisturbed samples obtained with a thin-walled Shelby tube sampler as well as disturbed samples using a standard split-spoon sampler. In-situ tests included the standard penetration (SPT) test, dynamic probing light (DPL) tests, and static load tests.

The laboratory tests were performed on the soil samples to determine particle size distributions, Atterberg limits, soil classifications, shear strength and consolidation characteristics.

3.2 Project location

The 400 kV Karuma-Kawanda Transmission Line was a 248.14 km long overhead powerline that traversed the districts of Wakiso, Luwero, Nakasongola, Masindi, and Kiryandongo in Uganda; while the 132 kV Karuma-Lira Transmission Line was located along the Karuma-Kamdini-Lira road.

The location map of the project area is shown in Appendix A.1.

3.3 The Site Geology

3.3.1 General Geology

The geology of the Karuma Interconnection Project (KIP) with respect to the quaternary era was covered by alluvium, swamps, and lacustrine deposit soils. It also had soils belonging to the Buruli-catena characterised by Ferrallitic soils, mainly red sandy-loams as presented in Appendix A.2.

The geology of Karuma-Lira Transmission Line was mainly underlain by the undifferentiated grabities and north granulites facie rocks (basement complex) as presented in Appendix A.2; whereas the geology for Karuma-Kawanda Transmission Line was underlain by gneissic granulitic complex rocks which were high grade metamorphics that included intermediate granulites and charnockites, quartz diorites, porphyroblastic and quartz-feldspathic types with the subsurface conditions dominated with silty clay soils, lateritisation and duricrust.

3.3.2 Local Geology

The local geology along Karuma-Lira Transmission Line mainly consisted of the Quaternary rock system (Alluvium deposits and Laterite), Neoarchaean rock system [A_{3} Umgb Metagabbro], Neoarchaean rock system [A3 ${ }_{3}$ Ugrdg Awela
granodiorite gneiss (2649 $\pm 6 \mathrm{Ma})]$ and Neoarchaean rock system [A3 Ubttg Gulu banded TTG gneiss (2652 $\pm 8 \mathrm{Ma}$)], and Neoarchaean Amuru group $\left(\mathrm{A}_{3} U b g n\right.$ Banded gneiss and $\mathrm{A}_{3} U A b h g n$ Biotite-hornblende gneiss).

The Karuma-Kawanda Transmission Line’s local geology (up to Masindi Port) mainly consisted of Quaternary rock system (QH1 Laterite and QHu Alluvium, swamp and lacustrine deposits), Neoproterozoic rock system [P3 MBsh Hoima mudstones, shales, slates and phyllites of Bunyoro group (765 Ma to 735 Ma and younger)], Mesoproterozoic rock system [P_{2} Ims Murchison mica schists, and P_{2} Ibif Lere banded iron formations of the Igisi group ($\sim 1.0 \mathrm{Ga}$)], Neoarchaean rock system [A_{3} do metadolerite, A_{3} Ugrdg Awela granodiorite gneiss [2649 $\pm 6 \mathrm{Ma}$ (Mega-anum)] and A_{3} Upggn Porphyritic granite gneiss].

3.3.3 The Soils

The Karuma-Lira Transmission Line soils mainly consisted of Amuria-catena, Buruli-catena, Sesse series and undifferentiated alluvium, whereas the KarumaKawanda Transmission Line traversed areas underlain by gneissic granulitic complex rocks as well as the Buganda-Toro systems. The relevance of presenting the areas' soil catena was to show the geological parent materials from which the current soils were formed when compared to geotechnical soil profiles with respect to depth, soil moisture or acidity (Waugh, 2000; Schaetzl and Anderson, 2005) and geohydrology among a series of distinct but co-evolving soils in the same climate. Thus, Appendix A. 2 presents the areas' soil catena under a generalised geology map of Uganda modified after Macdonald (1966), and Muwanga et al. (2001).

3.3.4 Seismicity

The proposed sites are located in Zone 2 of the Uganda Seismicity map (MoWT, 2010) as presented in Appendix A.3. Zone 2 implies a medium seismic risk level with a seismic zoning factor of $\mathrm{Z}=0.8$ for purposes of design (US 319, 2003; Delvaux et al., 2015), and a maximum peak ground acceleration (PGA) at the bedrock of 0.1 g (where $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$) as shown in Table 3.1:

Table 3.1: Uganda’s seismic zones (Newmark and Hall, 1969; US 319, 2003)

Zones	Seismic zoning factor (Z)	Bedrock acceleration (A)	Seismic Risk Level Interpretation
1	1.0	$0.1 \mathrm{~g}-0.23 \mathrm{~g}$	High seismic risk level
2	0.8	$0.07 \mathrm{~g}-0.1 \mathrm{~g}$	Medium seismic risk level
3	0.7	$0.05 \mathrm{~g}-0.07 \mathrm{~g}$	Low seismic risk level

Note: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

3.3.5 Climatic Zones

The proposed project area was located in the demarcated rainfall Zone I (MoWT, 2010) consisting of Eastern and Northern Uganda (Adjumani, Gulu, Apac, Western Lira, and Eastern Masindi districts) that receives an average mean rainfall of 1340 mm as presented in the Appendix A.4. The seasonal rainfall distribution patterns over Uganda can be generalised into the four broad seasons (MoWT, 2010).

- Season 1: Generally dry period that lasts from December of the preceding year to the end of February.
- Season 2: The main rainy season throughout Uganda and referred to locally as the 'long rains' lasts from March to the end of May.
- Season 3: Dry except in parts of northern Uganda during June-August.
- Season 4: The second rainy period throughout the country and known locally as the 'short rains', lasts from September to the end of November.

These rainfall patterns affect ground water levels because of seasonal effects. Thus, the geotechnical engineer may provide some allowances depending on the time of year when the works were carried out or when it rained.

3.4 Parameters for geotechnical and structural designs

This section was used to establish parameters for geotechnical and structural designs of the foundations. This was through the understanding of the soil's geotechnical properties which is a prerequisite to conducting the foundation's prescriptive geotechnical and structural designs of load capacities and settlements. The insitu exploratory tests included test trial pits, borehole drilling, dynamic probing light (DPL) test, standard penetration test (SPT), and soil resistivity tests. The laboratory tests performed on the soil samples included among others, the natural moisture content, particle size distribution, Atterberg limits, pH value, sulphate and chloride content, specific gravity, consolidation testing and shear strength testing, and bulk density.

3.4.1 Test Trial Pits

a) Objective

The objective was to give the engineer a simple and direct access to the insitu subsurface soil strata with their associated depths so as to visually appraise the soil conditions and obtain samples for laboratory analysis.

b) Reference Literature

- BS 5930: 1999+A2: 2010
- BS 6031: 2009

c) Significance

- The test trial pit helped in the visual assessment and recording of the soil stratification, presence of ground water table, presence of hard rock, and obtaining other insitu information that were used in the creation of comprehensive test trial pit logs for the site locations.
- They provided the opportunity to conduct in-situ tests such as hand shear vane, and/or collection of samples for laboratory and chemical testing.

d) Apparatus

- Measuring tape or any survey machine
- Digging tools e.g. hoe, shovel, pickaxe, scoop, or backhoe excavator.
- Wooden pegs and strings or lime powder
- Sisal bags or canvas or tarpaulin
- Plastic moisture bags/Air-tight jar
- Minimum of three (3) workers

e) Procedure

i) The locations of the trial pits were marked at a distance of 1 m from the survey mark stone so as not to disturb the final foundation's coordinate point.
ii) Using a manual procedure, the trial test pits were excavated to the dimensions of $1 \mathrm{~m} \times 0.5 \mathrm{~m} \times 3 \mathrm{~m}(\mathrm{~L} \times \mathrm{W} \times \mathrm{D})$ after being marked out by strings and pegs.
iii) The excavations were done layer by layer, and each stripped soil was stored on site separately from other excavated material.
iv) Jar samples were taken of the excavated soils at every metre depth or, if more frequent, at every stratum change.
v) The trial pits were excavated to a maximal depth of $3-5 \mathrm{~m}$, or until the excavated sides became unstable, and/or bedrock was reached.
vi) Following water strike, the flow and level were recorded over a 20-minute period, and ground water samples taken.
vii) When the trial pit was completed, the engineer and the technician recorded and photographed all details regarding the trial pit.
viii)The trial pit was backfilled in reverse order, in which it was excavated and compacted to reduce later settlement; however, in a few cases where at the end of the working day there was an exploratory hole not backfilled, it was securely covered and barricaded so as to prevent human or animal access.

f) Expected Results

- Trial pit logs detailing the depth and brief nature of the strata encountered.
- Description of the various strata encountered and/or removed.
- The presence or absence of water in the test pit and the depth encountered.
- Coordinate of the location and terrain description.

Figure 3.1: Typical excavated trial pits

3.4.2 Dynamic Probing Light

a) Objective

The objective of the Dynamic Probing Light (DPL) test was to test the thickness of the soil layers, the control of soil consistency, and the determination of strength and deformation parameters to a depth of $8-12 \mathrm{~m}$ if the ground was not too dense.
b) Reference Literature

- BS EN ISO 22476-2: 2005 + A1: 2011
- DIN 4094: 1990
c) Significance
- DPL provided a measure of the material's in-situ resistance to penetration, the strength of insitu soil, the thickness and location of underlying strata.
- Test results could be correlated to California Bearing Ratios (CBR), in-situ density, resilient modulus, and bearing capacity.

d) Apparatus

The Lightweight Dynamic Cone Penetrometer equipment consists of:

- 1 No. manual DPL testing apparatus with 10 kg drop-weight.
- 1 No. Jack-type tube puller.
- 6 No. SPT/DPT sounding tube ($22 \times 1000 \mathrm{~mm}$) with 10 cm markings
- 6 No. Threaded nipple studs of M16 x 50 for 22 mm sounding tubes.
- 1 No. Conical sounding tip of tempered steel $-5 \mathrm{~cm}^{2}$, M16 connection.
- 1 No. Conical sounding tip of tempered steel - $10 \mathrm{~cm}^{2}$, M16 connection.
- 20 No. Conical sounding tip - $10 \mathrm{~cm}^{2}$ - single use type.
- 2 No. Open-ended spanner 19 mm for connecting the 22 mm tubes.
- 1 No. Allen key (M8) for threaded nipples.
- 1 No. Sturdy wooden transport case for transport and storage.
- Total weight of the complete set is approximately 60 kg .

e) Procedure

i) The hammer mass of about 10 kg was dropped freely under gravity through a 500 mm height-fall to drive the cone of $0.001 \mathrm{~m}^{2}$ cross-sectional area.
ii) The number of blows per 100 mm penetration into the ground $\left(N_{10}\right)$ were then consecutively read and recorded throughout the entire 1 m length of the rod, and the N_{10} values were interpreted to give the unit point resistance, r_{d} and the dynamic point resistance, q_{d}.
iii) When the first rod reached a depth of 800 mm into the ground, the next rod was then securely placed, and the process was repeated until refusal. Thereafter, the rods were withdrawn using an extrusion lever.
iv) Whenever possible, the dynamic penetrometer testing was performed at rates of 15 to 30 strokes per minute, without pausing.
v) The number of strokes were calculated after every 10 cm of penetration depth. For individual tests in very soft or loose soils where the penetration depth of 10 cm was reached after 1 to 3 strokes, or for very consistent or dense soils where the penetration depth of 10 cm was not achievable, penetration depth at certain number of strokes (<5 or >50) were measured.

f) Expected Results

- The number of blows per $10 \mathrm{~cm}(100 \mathrm{~mm})$ penetration $\left(\mathrm{N}_{10}\right)$.
- The penetration rate in metres per blow (e).
- The unit point resistance $\left(\mathrm{r}_{\mathrm{d}}\right)$ and dynamic point resistance $\left(\mathrm{q}_{\mathrm{d}}\right)$ in Mpa.
- Graphical depictions of depth vs N_{10}, depth vs r_{d}, and depth vs q_{d}.

Figure 3.2: Dynamic Probing Light (DPL) test in the field

3.4.3 Standard Penetration Test

a) Objective

The objective of the Standard Penetration Test (SPT) was to determine the relative density and bearing capacity of granular sandy soils and/or comparative strengths of underlying soil strata based on established penetration N -values, that could be empirically related to many engineering properties.

b) Reference Literature

- BS EN ISO 22476-3: 2005
- ASTM D1586-99: 1999

c) Significance

- The SPT data was used to estimate both the strength and stiffness parameters for bearing capacity and settlement analysis of foundations.

d) Apparatus

Standard Penetration Test (SPT) tools consisted of the following:

- Drilling Rig
- Standard Split Spoon Sampler, and Shelby tube sampler
- Wax and sample-sealing material
- Chalk, metre-ruler, and Soil sampling jars
- Drop Hammer weighing 63.5kg
- Driving head (anvil).
- Guiding rod, Tripod assembly, and Extension rods.

e) Procedure

i) The Standard split-barrel Sampler (Split-spoon) was attached to the bottom of the drilling rod, while the top of the drilling rod attached by anvil was used to transfer the hammer load to the drilling rod. The anvil was connected to a guide rod passing through the drop hammer.
ii) The tripod was erected so that each leg formed an angle of 120° with respect to the other and equidistant from the centre mark. The pulley was hooked-up to the tripod with a rope passing over it, and one end of the rope connected with the drop hammer to lift it up.
iii) A rectangular trench was excavated to the required foundation depth (below which the soil's bearing capacity was required) at the centre mark.
iv) Gradually pulled the other end of the rope (manually or by some mechanical arrangements) to erect the sampler. Made sure that the sampler assembly was vertically erected at the centre mark of the testing spot.
v) The rope was pulled slowly to lift the drop hammer to the full height of the guide rod (76 cm approximately) and then the rope was suddenly released to provide free fall to the hammer repeatedly to drive the Standard split-barrel Sampler (Split-spoon) 18" ($\sim 450 \mathrm{~mm}$) into the soil.
vi) After driving the sampler 18 " ($\sim 450 \mathrm{~mm}$) into the soil, the number of blows required to penetrate each of the three 6 " ($\sim 150 \mathrm{~mm}$) increments were counted. The Standard Penetration Resistance value (N -value) was then considered as the number of blows required to penetrate the last 12" ($\sim 300 \mathrm{~mm}$).
vii) After the blow counts had been obtained, the split-spoon sampler was removed and opened to obtain a disturbed sample for subsequent testing.
viii)The specific weight of the soil was then determined on the spot of the boring log to obtain the effective overburden pressure.

f) Expected Results

- The number of SPT depth, number of seating and driving blows, measured SPT N-values, soil consistency description.
- The overburden correction factor $\left(\mathrm{C}_{\mathrm{N}}\right)$, hammer factor $\left(\eta_{1}\right)$, rod length factor $\left(\eta_{2}\right)$, sample factor $\left(\eta_{3}\right)$, borehole diameter factor $\left(\eta_{4}\right)$, overall correction factor (CER) and corrected SPT N-values.
- The ultimate (qult^{2}) and/or allowable bearing capacity ($\mathrm{q}_{\text {all }}$) in kPa .

3.4.4 Borehole drilling

a) Objective

The objective of borehole drilling was to extract core samples as part of deep subsurface exploration aimed at obtaining disturbed and undisturbed samples for visual examination and laboratory testing.

b) Reference Literature

- BS 5930: 1999

c) Significance

- Borehole drilling was more efficient in obtaining samples from significant depths for visual inspections and testing.
- With borehole drilling, overlying competent materials could be penetrated to assess the nature of underlying less competent strata to help assess the in-situ properties of the ground.

d) Apparatus

- Rotary drilling machine (GY-50 Conventional drilling rig)
- Core cutting barrels, Segmented rod, drilling rods and cutting bits.
- Machine stands/supports, Pulley systems, fork and chain spanners, casings
- Horse pipes, spade, Pickaxe, Hoe, Twist bars, spirit level/plumb bob.
- Jerrycans, metallic/halved plastic drum, and Sample Boxes

e) Procedure

i) The borehole centre marking and position coordinates were marked before setting and positioning the rotary drilling machine.
ii) After the rotary machine had been assembled, the drill rig was positioned on top of the marked point, and the drill rod with bits placed over the mark.
iii) To ensure verticality checks, a spirit level and/or plumb bob was used.
iv) The drilling works were commenced with the installation of the first 4 m casing to minimise the collapse of the top 4 m soil strata.
v) SPT Tests were conducted in all the boreholes at intervals of 1.5 m .
vi) The soil samples and strata profiles were recovered and recorded, and the recovered samples stored in the clearly labelled sample boxes.
vii) The ground water table was also monitored and recorded.
viii) The diameter of drilled holes varied from $150-50 \mathrm{~mm}$ as depth increased.
ix) The undisturbed samples from the bored pits were collected and stored in sealed tubes and conveyed with extreme care to avoid vibration and impactblows that could cause disturbance in samples.
x) The disturbed samples were packed in plastic bags after being recovered to avoid changes in moisture contents and contamination from drill-slimes.

f) Expected Results

- Boring log soil-profile with associated soil descriptions, SPT N-values and investigation core photos.

Figure 3.3: Laboratory team conducting borehole drilling

3.4.5 Natural Moisture Content

a) Objective

The objective of the test was to determine the amount of water present in the soil expressed as a percentage of the mass of dry soil.

b) Reference Literature

- BS 1377: Part 2: 1990
- ASTM D2216-98: 1998

c) Significance

- The moisture content was one of the most important index properties used in establishing a correlation between soil behaviour and its index properties.
- The water content of the material was used in expressing the phase relationships of air, water, and solids in the given volume of material.
- In fine-grained (cohesive) soils, the consistency of a given soil type depended on its water content. The water content of a soil, along with its liquid and plastic limits as determined by Test Method D 4318, was used to express its relative consistency or liquidity index.

d) Apparatus

- Drying oven with temperature of $105^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$
- Balance readable to 0.1 g
- Metal container, and Desiccator

e) Procedure

i) The container was cleaned, dried, and weighed to the nearest $0.1 \mathrm{~g}\left(m_{1}\right)$.
ii) A representative sample was crumbled and loosely placed in the container: For example, the minimal sample weight used was 30 g for fine-grained soils, 300 g for medium-grained soils, and 3kg for coarse-grained soils.
iii) The container with sample altogether, were immediately weighed (m_{2}) and placed in the oven to dry at $105^{\circ} \mathrm{C}$ for a minimum of 12 hours.
iv) After drying, the container and its contents altogether, were weighed $\left(m_{3}\right)$.

f) Expected Results

- The Moisture Content of the soil specimen, W, calculated as a percentage of the dry soil mass to the nearest 0.1%, from the equation:
$W=\left(\frac{m_{2}-m_{3}}{m_{3}-m_{1}}\right) \times 100 \%$
Where:
$\mathrm{m}_{1}=$ mass of container (in g)
$\mathrm{m}_{2}=$ mass of container and wet soil (in g)
$\mathrm{m}_{3}=$ mass of the container and dry soil (in g)

3.4.6 Particle Size Distribution (Sieve Analysis)

a) Objective

The objective of this test method was to separate particles into different grain size ranges and to quantitatively determine the mass of particles in each range. This test method used a square opening sieve criterion in determining the gradation of soil between the 3-inch size (75 mm) and No. $200(75 \mu \mathrm{~m})$ sieves.

b) Reference Literature

- BS 1377: Part 2, Sub-clause 9.2: 1990
- ASTM D6913/D6913M - 17: 2017; and ASTM D2487-17: 2017

c) Significance

- The soil gradation was used for classification as per ASTM D2487-17 (2017).
- The gradation (particle-size distribution) curve was used to calculate the coefficient of uniformity and the coefficient of curvature.
- Selection and acceptance of fill materials were based on gradation, for example, foundation backfills, like earthen dams have gradation requirements.
- The gradation of a soil was an indicator of its engineering properties. Hydraulic conductivity, compressibility, and shear strength are related to the gradation of the soil although the engineering behaviour is dependent upon many factors such as effective stress, plasticity, and geologic origins.

d) Apparatus

- Mechanical sieve shaker, sieves (standard sieve set, washing sieve, No. 200 ($75-\mu \mathrm{m}$), and designated separating sieve), and sieving containers (specimen containers, collection device and cumulative mass container)
- Washing sink with spray nozzle, balances, drying oven, sieve brushes
- Miscellaneous items such as wash bottle, spatula, and stirring rod
- Riffle box, quartering accessories, mortar, and rubber-covered pestle

e) Procedure

i) The weight of each sieve together with the bottom pan to be used in the analysis were written down, and the weight of the dry soil sample were recorded.
ii) All the sieves were cleaned and assembled in the ascending order of sieve numbers (75 mm sieve at top and $75 \mu \mathrm{~m}$ sieve at bottom). The pan was then
placed below the $75 \mu \mathrm{~m}$ sieve, and the soil sample carefully poured into the top sieve and the cap placed over it.
iii) The sieve stack was placed in the shaker and shaken for 10 minutes.
iv) Thereafter, the stack was removed from the shaker and the weight of each sieve with its retained soil and also the bottom pan with its retained fine soil were carefully weighed and recorded.
v) The mass of soil retained on each sieve was obtained by subtracting the weight of the empty sieve from the mass of the sieve + retained soil and recorded this mass as the weight retained on the data sheet. The sum of these retained masses approximated the initial mass of the soil sample.
vi) The percentage-retained on each sieve was calculated by dividing the weight retained on each sieve by the original sample mass.
vii) The percentage-passing was calculated by starting at 100% and subtracting the percentage-retained on each sieve in a cumulative procedure.
viii)A semi-logarithmic plot of grain size versus percentage-passing was made.

f) Expected Results

- Prepared calculation sheet for soil particle percentage passing detailing the weight retained on each sieve, percentage retained, and cumulative percentage retained on each sieve, and percentage passing each sieve.
- A semi-logarithmic plot of grain size against the percentage passing.

3.4.7 Liquid Limit Tests (Cone Penetrations Method)

a) Objective

The objective was to determine the Liquid Limit (LL), which is the empirically established moisture content where a soil passes from the liquid to plastic state.

b) Reason for using Cone Penetration Method

- It was easier to perform in laboratory, and the cone penetrometer results don't depend on the operator's judgement, thus, making the results very reliable.
- The results could be used to estimate the undrained shear strength of soils.

c) Reference Literature

- BS 1377: Part 2, Sub-clause 4: 1990; and ASTM D4318-17: 2017

d) Significance

- Liquid limit was important for classifying fine-grained or cohesive soils.
- Liquid Limit gave information on the soil’s insitu state of consistency.
- Liquid Limit was used to predict the consolidation properties of soils while calculating allowable bearing capacity and settlement of foundations.
- Liquid Limit value of a soil was used to calculate the activity of clays and toughness index of the soil.

e) Apparatus

- Test sieves (425 $\mu \mathrm{m}$), air-tight container, and moisture content apparatus
- A flat glass plate, and a metal straight edge
- Two palette knives or spatulas, penetrometer, and stopwatch
- 80 g and 35 mm long, polished stainless-steel cone of a 30° angle.
- Metal cup (Ø55 mm and 40 mm deep) with the rim parallel to the flat base
- An evaporating dish or a damp cloth, and a wash bottle with clean water

f) Procedure

i) A sample of the soil of sufficient size was taken to give a test specimen weighing about 400 g which passes the 425 mm sieve.
ii) The soil was then transferred to a glass plate, water added, and thoroughly mixed with two palette knives to form a thick homogeneous paste.
iii) The paste was later placed in an airtight container and allowed to stand for 1624 hours to enable the water to permeate through the soil.
iv) The 400 g soil sample was taken and placed on a glass plate, and the paste mixed for at least 10 minutes using the two palette knives.
v) A portion of the mixed soil was pushed into the cup with a palette knife, taking care not to trap air, and gently tapping the cup against a firm surface. Any excess soil was cut-off with the straight edge to give a smooth level.
vi) With the penetration cone locked in the raised position, the cone was raised so as to just touch the surface of the soil. When the cone was in the correct position, the cup's slight movement was used to mark the soil surface. The dial gauge was lowered to make contact with the cone shaft and the reading of the dial gauge recorded to the nearest 0.1 mm .
vii) The cone was released for a period of 5 ± 1 seconds, the cone locked in position, and dial gauge lowered to make contact with the cone shaft so as to record the read to the nearest 0.1 mm . The difference between the readings was recorded as the cone penetration value.
viii) The cone was then lifted-out and carefully cleaned.
ix) A little more wet soil was added to the cup and the process repeated. However, when the difference between the first and second penetration readings was less than 0.5 mm , the average of the two penetrations was recorded. When the second penetration was more than 0.5 mm and less than 1 mm or different from the first, a third test was carried out. If the overall range was then not more than 1 mm , the average of the three penetrations was recorded. In rare cases
where the overall range was more than 1 mm , the soil was removed from the cup, remixed and the test repeated until consistent results are obtained.
x) A moisture content sample of 20 g was taken from the area penetrated by the cone and its moisture content determined.
xi) The penetration test was repeated at least three more times using the same sample of soil, to which further increments of water had been added. The amount of water added was such that a range of penetration values of approximately 15 mm to 25 mm was covered by the four test-runs.
xii) The cup was washed and dried each time the soil was removed from it.

g) Expected Results

- Calculated moisture content of each specimen using equation 3.6:
$w=\left(\frac{m_{1}-m_{3}}{m_{3}-m_{1}}\right) \times 100 \%$
Where:
$\mathrm{m}_{1}=$ mass of container (in g); $\mathrm{m}_{2}=$ mass of container and wet soil (in g)
$\mathrm{m}_{3}=$ mass of container and dry soil (in g)
- The plot of the relationship between the moisture content and cone penetration with the moisture content as the abscissae and the cone penetration as the ordinates, both on linear scales.
- Drawing of the best straight line of fit across the points.
- The Liquid Limit (w_{L}) determination as the moisture content of the soil corresponding to the cone penetration value of 20 mm .

3.4.8 Liquid Limit Tests (Casagrande Method)

a) Objective

The objective was to determine the Liquid Limit (LL), which is the empirically established moisture content where a soil passes from the liquid to plastic state.

b) Reason for using Casagrande Method

- It was an alternative to the cone penetration method.
- The results could be used to estimate the undrained shear strength of soils.
c) Reference Literature
- BS 1377: Part 2, Sub-clause 4: 1990
- ASTM D4318-17: 2017
d) Significance
- Liquid limit was used in the classification of fine-grained/cohesive soils.
- Liquid Limit gave information on the soil’s insitu state of consistency.
- Liquid Limit was used to predict the consolidation properties of soils while calculating allowable bearing capacity and settlement of foundations.
- Liquid Limit was used to calculate the activity of clays and toughness index.

e) Apparatus

- Casagrande’s liquid limit device
- Grooving tools of both standard and ASTM types
- Oven, evaporating dish or glass sheet, and spatula
- 425 microns sieve
- Weighing balance, and Wash bottle

f) Procedure

i) The drop of the cup of the liquid limit device was adjusted by releasing the two screws at the top and by using the grooving tool handle. The drop of 1 cm was made at the point of contact on the base, and the screw tightened.
ii) 120 g of the air-dried soil sample passing 425 microns sieve was taken, and the sample thoroughly mixed with distilled water a glass plate for about 15 to 30 min, to form a uniform paste mix.
iii) The mix was kept under humid conditions to obtain uniform moisture distributions for a sufficient maturing period of up to 24 hours.
iv) A portion of the matured paste was taken and thoroughly remixed, and placed in the cup of the device by a spatula and levelled with a straight edge to have a minimum depth of 1 cm soil at the point of the maximum thickness. Any excess soil was transferred to the evaporating dish.
v) A groove was cut in the sample in the cup using the appropriate tool, and a groove was drawn through the paste in the cup along the symmetrical axis, through the cup centre line.
vi) The handle of the device was turned at a rate of 2 revolutions per second, and the number of blows counted until the two halves of the soil specimen came into contact at the bottom of the groove along a distance of 12 mm due to flow and not by sliding.
vii) A representative soil sample was collected by moving spatula width-wise from each edge of the soil-cake at right angles to the groove.
viii) The remaining soil was removed from the cup and mixed with the soil left in evaporating dish.
ix) The water content of the mix in the evaporating dish was changed either by adding more water if the water content was to be increased or by kneading the soil, if the water content was to be decreased.
x) The steps were repeated so as to determine the number of blows (N) and the water content in each case.

g) Expected Results

- The flow curve of $\log N$ against w drawn so as to determine the liquid limit corresponding to $\mathrm{N}=25$ blows.

3.4.9 Plastic Limit and Plasticity Index Tests

a) Objective

The objective was to determine the Plastic Limit (PL), which is the moisture content where the thread breaks apart at a 3.2 mm diameter. A soil is non-plastic if the thread cannot be rolled down to 3.2 mm at any moisture possible.
b) Reference Literature

- BS 1377: Part 2, Sub-clause 5: 1990
- ASTM D4318-17: 2017

c) Significance

- Plastic Limit (PL) was used together with the Liquid Limit to determine the Plasticity Index which when plotted against the Liquid Limit on the plasticity chart provided a means of classifying cohesive soils.
- The PL test was performed as a continuance of the LL test, and material for the test could conveniently be prepared as part of the Liquid Limit test.
- A wide variety of soil engineering properties have been correlated to the LL and PL values, and these limits were used to classify the fine-grained soils according to the Unified Soil Classification system or AASHTO system.

d) Apparatus

- Two flat glass plates, one for mixing soil and one for rolling threads
- Two palette knives or spatulas, and Clean water
- Apparatus for moisture content determination
- A length of rod, 3 mm in diameter and 100 mm long

e) Procedure

i) A 40 g soil paste was taken and placed on a glass plate, and the soil dried partially until it became plastic enough to be shaped into a ball.
ii) The soil ball was moulded between fingers and rolled between the palms of both hands until the heat of the hands had sufficiently dried the soil for slight cracks to appear on its surface.
iii) The sample was divided into two portions of about 20 g each, and separate determinations carried out on each portion. Then each of the two portions divided into four parts.
iv) The soil was moulded in between the fingers to equalise the moisture distribution, and then the soil formed into a thread of about 6 mm diameter between the first finger and thumb of each hand.
v) The thread was rolled between the fingers, from finger-tip to the second joint of one hand and the surface of the glass plate to reduce the thread diameter to 3 mm in about 5 to 10 complete forward and back movements.
vi) The soil was picked up, moulded between the fingers to dry it further, and formed into a thread and rolled out again as specified above.
vii) The procedure was repeated until the thread sheared in both longitudinal and transverse directions when rolled to 3 mm diameter. The first crumbling point was considered as the Plastic Limit.
viii) All the pieces of crumbled soil threads were gathered and transferred to a suitable container for moisture content determination.
ix) The rolling procedure was repeated on the other three sub-sample portions.
x) The rolling procedure was repeated on the second sub-sample so as to achieve two separate moisture content determinations. However, the whole test was repeated when the two results differed by more than 0.5%.
xi) The average of the two moisture content values was calculated, and the value expressed to the nearest whole number as the Plastic Limit $\left(W_{P}\right)$.
xii) The Plasticity Index (I_{P}) was calculated as the difference between the Liquid Limit (WL) and Plastic Limit $\left(W_{P}\right)$, as $I_{P}=W_{L}-W_{P}$

f) Expected Results

- The records for mass of empty container (m_{1}), mass of container and wet soil $\left(m_{2}\right)$, and the mass of container and dry soil $\left(m_{3}\right)$.
- The calculations of mass of water $\left(m_{2}-m_{3}\right)$, mass of dry soil $\left(m_{3}-m_{1}\right)$, and moisture content $\left[\left(\frac{m_{2}-m_{3}}{m_{3}-m_{1}}\right) \times 100 \%\right]$.

3.4.10 Linear Shrinkage Limit Tests

a) Objective

The objective was to determine the Linear Shrinkage (LS) value so as to quantify the amount of shrinkage likely to be experienced by clayey material.

b) Reference Literature

- BS 1377: Part 2, Sub-clause 6.5: 1990
- ASTM D4318-17: 2017

c) Significance

- The Linear Shrinkage was considered a more reliable indicator than the Plasticity Index for materials with very low plasticity (that is, $\mathrm{PI} \leq 6 \%$).
- Linear Shrinkage test offered a convenient way of confirming that the test results for the Plasticity Index were reasonable because most soil types exhibit a relationship between Plasticity Index and Linear Shrinkage.

d) Apparatus

- Palette knives or spatulas, mould, petroleum jelly, and distilled water.
- Drying oven, and Graduated ruler or Vernier callipers.

e) Procedure

i) A 150 g sample from thoroughly mixed portion of bulk material passing 425 microns sieve was prepared.
ii) The mould was thoroughly cleaned, and a thin film of grease applied to its inner walls, and the soil sample thoroughly mixed with distilled water using palette knives until the mass became homogeneous.
iii) The thoroughly mixed soil-water paste was placed in the mould to be slightly above the sides of the mould.
iv) Then the mould with the soil paste dried in the oven at a maintained temperature of about $105^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$.
v) After complete drying, the mould and soil were cooled and the mean length of the soil bar $\left(\mathrm{L}_{\mathrm{D}}\right)$ measured.
vi) The linear shrinkage $\left(L_{S}\right)$ of the soil was calculated as a percentage of the original length of the specimen $\left(\mathrm{L}_{0}\right)$ from the following formula:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{S}}=\left[1-\left(\frac{\mathrm{L}_{\mathrm{D}}}{\mathrm{~L}_{0}}\right)\right] \times 100 \% \tag{3.7}
\end{equation*}
$$

f) Expected Results

- The recorded lengths of L_{0} and L_{D}, and the calculated value of L_{S}.

3.4.11 $\mathbf{~ p H}$ Test

a) Objective

The objective of the pH test was to determine the degree of acidity (values less than
7) or alkalinity (values greater than 7) and to supplement the soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated.
b) Reference Literature

- BS 1377: Part 3: 1990
- ASTM G51-18: 2018

c) Significance

- pH value was an indicator of the corrosivity of a soil environment.
- The pH of the soil was a useful variable in determining the solubility of soil minerals and the mobility of ions in the soil.

d) Apparatus

- pH meter machine suitable for laboratory testing.
- Containers made of glass or wax coating, with moisture proof covers.
- pH buffer solutions of $\mathrm{pH} 4.0,7.0$ and 10.0 or those recommended by the pH meter manufacturer for meter standardisation.
- Distilled water and wash bottle.
- Thermometer readable to $0.1^{\circ} \mathrm{C}$.
- 2.36 mm sieve.
- Balance, with sufficient capacity and readable to 0.1% of the sample mass, or better, conforming to the requirements of AASHTO M 231.
- Oven capable of maintaining a temperature of $60^{\circ} \mathrm{C}$.
- Glass stirring rod.

e) Procedure

i) The received soils were oven dried at controlled temperature conditions not exceeding $60^{\circ} \mathrm{C}$.
ii) A sufficient amount of the sample was quartered to yield approximately 100 g of material taking care not to crush rock particles or naturally occurring grains and screened through a 2.36 mm sieve.
iii) Only natural material passing the 2.36 mm sieve was used for the test.
iv) $30.0 \pm 0.1 \mathrm{~g}$ sample of the prepared soil was placed into the test container, and an equal mass of distilled water placed inside the soil sample.
v) The mixture was stirred to obtain a slurry and covered.
vi) The sample was allowed to stand for a minimum of 1 hour, whilst stirring every 10 to 15 minutes.
vii) The pH meter was standardised as per the manufacturer's instructions and using the 7.0 pH buffer standard solution.
viii) The sample was stirred with a glass rod immediately prior to placing the pH meter electrode into the sample.
ix) The electrode was then placed in the soil-slurry sample and remained immersed in it for a sufficient time for the meter to stabilise.
x) The pH of the sample was then read from the pH meter machine and recorded to the nearest tenth of a whole number.
xi) The pH meter electrode was then cleaned by washing with distilled water and stored in accordance with the manufacturer's instructions.

f) Expected Results

- The pH value of soil suspension or ground water to the nearest 0.1 pH unit.

3.4.12 Sulphate and Chloride Content Test

a) Objective

The objective of the test was to sequentially determine the chloride and/or sulphate ions in water or soil by suppressed ion chromatography.

b) Reference Literature

- BS 1377: Part 3: 1990
- ASTM D4327-11: 2011

c) Significance

- The tests provided both qualitative and quantitative determination of anions such as carboxylic acids, Cl^{-}and SO_{4}^{2-} in milligram per litre (mL) range.

d) Apparatus

- Flasks, class A volumetric of $100 \mathrm{~mL}, 500 \mathrm{~mL}, 1000 \mathrm{~mL}$ capacities.
- Ion chromatograph, with an auto sampler.
- Pipettes, class A volumetric of $1 \mathrm{~mL}, 10 \mathrm{~mL}, 25 \mathrm{~mL}, 50 \mathrm{~mL}$ capacities.
- Vials (5 mL capacity) and caps for auto sampler.
- Certified anion standard reference solution, containing 100 parts per million (ppm) chloride and sulphate.
- Deionised or distilled water, meeting ASTM D1193, Type II requirements.
- Sodium bicarbonate eluent concentrate, for ion chromatograph of 8.0 mM sodium carbonate and 1.0 mM sodium bicarbonate after $100 \times$ dilution.

e) Procedure

i) 6-8 standards were prepared using the anion standard solution ranging from 0.1-100 ppm, after ensuring that the standards were well mixed.
ii) The ion chromatograph was set up and the standards run; and a calibration curve for Cl^{-}and SO_{4}^{2-} ions created using the results.
iii) For Chloride and Sulphate contents, 50 mL of the filtered sample was pipetted into a 500 mL volumetric flask and diluted to the mark, and the dilution wellshaken into a homogenous mixture.
iv) The manufacturer's instructions were followed on how to start the ion chromatograph's pump and electronic systems, by pumping the eluent through the column and detector until it attained a stable baseline.
v) Samples were poured into properly labelled sample vials, and one prepared standard and one de-ionized water blank were run after every 4-5 samples to check the accuracy of the chromatograph.
vi) The samples were run through the ion chromatograph to determine the concentration of the chloride and sulphate ions in conformity to the manufacturer's recommendation for ion chromatograph operation.
vii) The Cl^{-}and $\mathrm{SO}_{4}{ }^{2-}$ contents in ppm (parts per million) were obtained as determined by the ion chromatograph; and the conversion factors used to convert chloride and sulphate content in the original sample to ppm.

f) Expected Results

- Calculated dilution factor as per the equation:
$D_{F}=\frac{V_{d}}{V_{p}}$
Where:
$D_{F}=$ the difusion factor
$\mathrm{V}_{\mathrm{d}}=$ the volume of the flask used for dilution (in mL)
$\mathrm{V}_{\mathrm{p}}=$ the volume of the pipette used to make the dilution (in mL)
- Calculated concentration of standard solution used for calibration:
$\mathrm{S}_{\mathrm{c}}=\frac{\mathrm{C}_{\mathrm{s}}}{\mathrm{D}_{\mathrm{F}}}$
Where:
$S_{c}=$ standard solution concentration; and $D_{F}=$ the diffusion factor used
$\mathrm{C}_{\mathrm{s}}=$ concentration of the ion in certified reference solution (ppm)
- Calculated concentration of chloride ions in the original soil sample:
$C l=\frac{\mathrm{R}^{\mathrm{D}} \mathrm{D}_{\mathrm{F}} \times \mathrm{F}_{l}}{\mathrm{~W}}$
Where:
$C l=$ concentration of chloride ions in the original soil sample (ppm)
$R=$ concentration of chloride ions in the sample run through the ion chromatograph (ppm)
$D_{F}=$ difusion factor
$\mathrm{F}_{l}=$ volume of the flask containing undiluted sample (mL)
$W=$ weight of the original soil sample (g)
- Calculated concentration of Sulphate ions in the original soil sample:
$\mathrm{SO}_{4}=\frac{\mathrm{RxD} \mathrm{D}_{\mathrm{F}} \times \mathrm{F}_{l}}{\mathrm{~W}}$
Where:
$\mathrm{SO}_{4}=$ concentration of sulphate ions in the original soil sample (ppm)
$R=$ concentration of chloride ions in the sample run through the ion chromatograph (ppm)
$D_{\mathrm{F}}=$ difusion factor
$\mathrm{F}_{l}=$ volume of the flask containing undiluted sample (mL)
$W=$ weight of the original soil sample (g)

3.4.13 Bulk Density and Unit Weight Test

a) Objective

The objective of the test was to determine the bulk density of the soils, from which the unit weight of the soil may easily be derived. The unit weight of a soil is an
essential parameter in most geotechnical engineering analyses, e.g. stability of slopes, consolidation settlement, earth pressure and bearing capacity analyses.

b) Reference Literature

- BS 1377: Part 2: 1990
- ASTM D7263-09: 2018

c) Significance

- Bulk density test could be used to convert the water fraction of the soil from a mass basis to a volume basis and vice-versa. When the specific gravity is known, dry density can be used to calculate porosity and void ratio.
- Dry density was also useful for determining the degree of soil compaction.
- Unit weights of remoulded specimens were used to evaluate the degree of backfill compaction when the dry density values were used in conjunction with compaction curve values.

d) Apparatus

- Balance readable to 1 g ; and Sample extruder
- Apparatus and equipment for moisture content determination
- Drying Oven; and Thermometer
- Apparatus for handling hot containers

e) Procedure

i) After the registration of the cylindrical tube sample, the lids were unscrewed, and the wax removed.
ii) The cylinder with the sample inside were weighed, and the mass recorded to the nearest $1 \mathrm{~g}\left(m_{T}\right)$.
iii) The length of the sample in the cylinder was determined by measuring the length of the cylinder $\left(l_{1}\right)$ and the depths from both ends of the cylinder (l_{2} and l_{3}). The sample's average depths were recorded.
iv) The sample was extruded by following the relevant procedures for further tests to be carried out on the sample.
v) Thereafter, the mass (m_{c}) of the cleaned and dried cylinder was weighed.
vi) The moisture content was then determined on three different sample specimens, in order to achieve the average condition of the sample.

f) Expected Results

- Calculated Bulk density of the sample, ρ (in $\mathrm{kg} / \mathrm{m}^{3}$) expressed to the nearest 1 $\mathrm{kg} / \mathrm{m}^{3}$:
$\rho=\frac{M}{\mathrm{~V}}=\left[\frac{\left(m_{T}-m_{c}\right)}{V}\right] \times 100 \%$
Where:
$\mathrm{m}_{\mathrm{T}}=$ the mass of the cylinder and sample (in g)
$\mathrm{m}_{\mathrm{c}}=$ the mass of the empty cylinder (in g)
$V=$ the volume of the sample (in cm^{3})
- Calculated Unit weight of the sample, γ (in $\mathrm{kN} / \mathrm{m}^{3}$) expressed to the nearest $0.01 \mathrm{kN} / \mathrm{m}^{3}$ as $\gamma=\frac{W}{\mathrm{~V}}=\frac{M g}{V}=\rho \times g=\rho \times 9.81 \times 10^{-3}$ Where:
$g=$ the acceleration due to gravity $\left(=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
- Calculated dry density, void ratio and degree of saturation (where possible)

3.4.14 Specific Gravity (Particle Density Tests)

a) Objective

The objective of the test was to determine the ratio of the mass of unit volume of soil at a stated temperature to the mass of the same volume of gas-free distilled water at a stated temperature.
b) Reference Literature

- BS 1377: Part 2, Sub-clause 8: 1990
- ASTM D854-14: 2014
c) Significance
- The specific gravity of a soil solids was used in calculating the phase relationships of soils, such as void ratio and degree of saturation.
- The specific gravity of the soil solids was used to calculate the density of the soil solids by multiplying its specific gravity by the density of water.

d) Apparatus

- Pycnometer, weigh-balance, Drying Oven, Thermometer and Desiccator
- Entrapped air removal apparatus such as a Hot Plate or Bunsen Burner
- Insulated container, and Funnel
- Pycnometer Filling Tube with Lateral Vents (optional)
- Sieve - No. 4 (4.75mm), and Blender
- Miscellaneous Equipment, such as a computer or calculator (optional), specimen dishes, and insulated gloves

e) Procedure

i) The density bottle was washed clean with water, dried, allowed to drain, and the empty bottle with its stopper weighed $\left(W_{1}\right)$.
ii) $10-20 \mathrm{~g}$ of oven-soil sample that had been cooled in a desiccator was taken, transferred to the bottle, and after the bottle and soil weighed $\left(W_{2}\right)$.
iii) 10 ml of distilled water was put in the bottle to allow the soil to soak completely for about 2 hours.
iv) Again, the bottle was completely filled with distilled water, and the stopper placed on top, and the bottle kept under constant temperature $\left(T_{x}{ }^{\circ} C\right)$.
v) The bottle was taken, wiped clean and dried, and the weight of the bottle and its contents $\left(W_{3}\right)$ determined.
vi) The bottle was emptied and thoroughly cleaned and filled only with distilled water and weighed $\left(W_{4}\right)$ at temperature $\left(T_{i}{ }^{0} C\right)$.
vii) The same process was repeated for 2 to 3 times, to take its average reading.

f) Expected Results

- The Specific gravity of soil calculated from the equation:
$G_{s}=\frac{\text { Density of water at } 27^{\circ} \mathrm{C}}{\text { Weight of water of equal volume }}$
$\Rightarrow G_{s}=\frac{\left(W_{2}-W_{1}\right)}{\left(W_{4}-W_{1}\right)-\left(W_{3}-W_{2}\right)}=\frac{\left(W_{2}-W_{1}\right)}{\left(W_{2}-W_{1}\right)-\left(W_{3}-W_{4}\right)}$

Where:
$\mathrm{W}_{1}=$ weight of empty bottle with its stopper only
$\mathrm{W}_{2}=$ weight of bottle and dry soil sample only
$\mathrm{W}_{3}=$ weight of bottle and dry sample and water only
$\mathrm{W}_{4}=$ weight of bottle and water only

- Unless otherwise specified, the specific gravity values reported shall be based on water at $27^{\circ} \mathrm{C}$, implying the specific gravity at $27^{\circ} \mathrm{C}$ is given by:

$$
\mathrm{G}_{\mathrm{s}} \text { at } 27^{\circ} \mathrm{C}=\mathrm{K} \times \text { Specific gravity at } T_{x}{ }^{\circ} \mathrm{C}
$$

Where:

$$
\begin{equation*}
\mathrm{K}=\frac{\text { Density of water at temperature } \mathrm{T}_{\mathrm{x}}{ }^{\circ} \mathrm{C}}{\text { Density of water at temperature } \mathrm{T}_{\mathrm{i}}{ }^{\circ} \mathrm{C}} \tag{3.14}
\end{equation*}
$$

3.4.15 Direct Shear Test

a) Objective

The objective of the test was to determine the angle of internal friction and cohesion for a fine, dry sand under direct shear boundary conditions.
b) Reference Literature

- BS 1377: Part 7: 1990
- ASTM D3080 / D3080M - 11: 2011

c) Significance

- The direct shear test was suited to the relatively rapid determination of consolidated drained strength properties because the drainage paths through the test specimen were short, thereby allowing excess pore pressure to be dissipated more rapidly than with other drained stress tests.
- The test was applicable on all undisturbed, remoulded or compacted soil materials, in assessing the strength in a field situation where complete consolidation had occurred under the existing normal stresses; and the results from several tests were used to express the relationship between consolidation stress and drained shear strength.
- The fixed location of the plane in the test could be an advantage in determining the shear resistance along recognisable weak planes within the soil material and for testing interfaces between dissimilar materials.

d) Apparatus

- Direct shear box apparatus
- Loading frame (motor attached), and Dial gauge
- Proving ring, Tamper, and Straight edge.
- Balance to weigh up to 200 mg , and spatula.
- Aluminium container

e) Procedure

i) The density bottle was cleaned by washing with water and dried by allowing it to drain.
ii) The inner dimension of the soil container was checked, and the parts of the soil container assembled together.
iii) The volume of the container was calculated, and its weight taken.
iv) The soil was placed in smooth layers (approximately 1 cm thick), however whenever a dense sample was desired, the soil was tamped.
v) The soil container was weighed, and the difference of these two weights yielded the weight of the soil, from which the soil's density was calculated.
vi) The surface of the soil was made plane.
vii) The upper grating was placed on stone and the loading block placed on top of the soil.
viii) The thickness of soil specimen was measured.
ix) The desired normal load was applied, and the shear pin removed.
x) The dial gauge was attached to measure the change of volume.
xi) The initial reading of the dial gauge and calibration values were recorded.
xii) Before proceeding to test, all adjustments were checked to see that there was no connection between the two parts except sand/soil.
xiii)The motor was started, and the reading of the shear force taken and recorded. Also, the volume change readings were taken until failure.
xiv) A 5 kg normal stress was added, and the experiment continued until failure.
xv) All readings were carefully recorded, and the dial gauges set to zero before starting the experiment.
xvi) The shear stress ($\tau=P_{h} / A$), normal stress ($\sigma_{n}=P_{v} / A$), horizontal displacement $\left(\delta_{h}\right)$ and vertical displacement $\left(\delta_{v}\right)$ for each observed value were computed.
xvii) The plotting of shearing stress (τ) against horizontal displacement $\left(\delta_{h}\right)$ and obtaining the maximum value of the shearing stress ($\tau_{\max }$) was made.
xviii) A graph of normal displacement versus shear displacement was plotted.
xix) A graph of the shearing stress (τ) against normal stress $\left(\sigma_{n}\right)$ was plotted, whereby the y-intercept of the straight line gave the cohesion (c), and the angle of internal friction (\varnothing) of the soil was determined from the slope by:

$$
\begin{equation*}
\emptyset=\tan ^{-1}\left(\frac{\tau}{\sigma_{n}^{\prime}}\right) \tag{3.15}
\end{equation*}
$$

f) Expected Results

- The parameters of the angle of internal friction (\varnothing) in degrees, and the cohesion or intercept (c) in $\mathrm{kg} / \mathrm{cm}^{2}$ of the given soil sample tested in the laboratory.

3.4.16 One-dimensional Consolidation Test

a) Objective

The objective of the test was to determine the magnitude and rate of consolidation of soil when it was restrained laterally and drained axially while subjected to incrementally applied controlled-stress loads; which data was used in predicting the rate and amount of settlement of structures founded on clay.
b) Reference Literature

- BS 1377: Part 6: 1990
- ASTM D2435/D2435M - 11: 2011 or AASHTO T 216-07: 2012

c) Significance

- The data from the consolidation test was used to estimate the magnitude and rate of both differential and total settlements of a structure or earth fill. Hence, data estimates from the consolidation tests were of key importance in the design of engineered structures and the evaluation of their performance.

d) Apparatus

- Load device for applying vertical loads or total stresses to the specimen
- Consolidometer, and Specimen trimming device
- Balance sensitive to 0.01 g , and Stopwatch
- Moisture can, and Drying oven
e) Procedure for preparation of samples and test specimen
i) The sample's covering was removed, and its orientation maintained before placing the sample on a wax paper disc and glass plate.
ii) The diameter was rough-cut using a wire-saw to within 3.18 mm of the final diameter, and the sample's moisture contents got.
iii) The sample was assembled in the trimmer and trimmed using a cutting shoe and spatula for use in the second moisture content determination.
iv) Once the sample was completely fitted into the specimen ring, its top and bottom were trimmed with a wire-saw, and any final cuts to the top surface made with a sharp straight edge.
v) The $3^{\text {rd }}$ and $4^{\text {th }}$ moisture contents were obtained from these samples.
vi) Using the recess tool, space was created at the top of the ring, and all excess bottom soils trimmed and levelled with a sharp straight edge.
vii) The mass of the specimen and ring (M_{s+r}) was determined, and the recess from the top of ring to the soil surface $\left(\Delta H_{i}\right)$ measured.

f) Procedure for apparatus calibration

i) The cell was assembled, namely the stones, filter paper and top cap, before being aligned in the loading frame.
ii) A 453.5 g seating load was placed on the cell and zero reading on the displacement transducer obtained.
iii) The same loads were applied to the apparatus as would be used in testing the specimen.
iv) At each load increment, the displacement readings at $15 \mathrm{sec}, 30 \mathrm{sec}, 1 \mathrm{~min}, 2$ min and 5 min were recorded, with the change in dial reading giving the machine deflection curve.

g) Procedure for apparatus preparation

i) The Oedometer machine's assembly of stones, filter paper and top cap, and the initial height between top of cap and ring $\left(z_{3}\right)$ were made.
ii) Then the Oedometer machine was disassembled; and the specimen ring and cutting shoe greased.
iii) The mass of the empty specimen ring $\left(M_{\mathrm{r}}\right)$, ring's height $\left(M_{\mathrm{r}}\right)$, ring's diameter $\left(D_{\mathrm{r}}\right)$, and the thickness of one piece of filter paper (H_{fp}) were determined; and then the two pieces of filter paper were cut.
iv) The stones were boiled for 10 minutes to clean and remove air.
v) Two (2) wax paper disks were cut to the diameter of the specimen.

h) Procedure for apparatus assembly

i) The base was water-filled, followed by insertion of the bottom stone; covered by filter paper and excess water removed with paper towel.
ii) The specimen and ring were placed on the stone, the rim covered with a gasket and tightened with locking ring.
iii) The specimen was covered with filter paper and a top stone, and the stone allowed to drain before placing on the soil.
iv) Thereafter, the top cap was placed on the stone, and the height $\left(z_{3}\right)$ measured with the specimen.
v) The assembly was located in the loading frame with dial gauge and balance arms, and the 453.5 g seating load applied.

i) Test Procedure

i) The specimen was consolidated using a load increment ratio ($\Delta \mathrm{P} / \mathrm{P}$) between 0.5 and 1.0 for loading and -0.25 and -0.50 for unloading.
ii) The recommended schedule (S) being used was $0.125,0.25,0.5,1.0,2.0,4.0$, 8.0, 4.0, 1.0.
iii) The water bath was filled at 25% of the overburden stress of about 0.25 kilopound per square inch (ksi) or 1723.7 kPa or within 2 hours.
iv) For each increment, the displacement transducer reading versus time was recorded, remembering that the initial portion of the curve was very important to define the start of consolidation $\left(\varepsilon_{s}\right)$.
v) During each increment, a plot of both root time and log time curves were made, with additional increments applied after the end of primary consolidation had been reached.
vi) One cycle of secondary compression was allowed to occur under maximum load and before the unload-reload cycle; and at the end, the specimen was unloaded to seating load and allowed time for swelling.
vii) The water was removed from the bath and so was the specimen from the apparatus. After, any extruded soil was removed and oven dried.
viii) The specimen surface was dried and mass of both soil and ring determined; thereafter, the soil extruded, and its moisture content got.
ix) The washings from the filter paper and the inside of the ring were collected and oven dried.

j) Expected Results

- The calculations and results from the following equations (3.16-3.25):

Initial Specimen Height $=H_{r}-\Delta H_{i}-H_{f p}$
Moisture content $=\frac{\text { (Total mass-Dry mass) }}{\text { Dry mass }}$
Void Ratio $=\frac{(\text { Total volume }- \text { Volume of solids })}{\text { Volume of solids }}$

Volume of solids $=\frac{\text { Mass of oven dried soil }}{\text { Specific Gravity }}$
Degree of saturation $=\frac{\text { Specific Gravity x Moisture content }}{\text { Void ratio }}$
$\sigma^{\prime}{ }_{v}=\frac{\text { Applied load-tare load }+ \text { top cap and stone }}{\text { Area }}$
Where:
$\sigma^{\prime}{ }_{v}=$ Vertical effective stress when the pore pressure is zero
$\varepsilon_{v}=\frac{\text { measured axial deformation }- \text { apparatus compression }}{\text { Initial specimen height }}$
Where:
$\varepsilon_{v}=$ Vertical strain
Compressibility $=\mathrm{a}_{\mathrm{v}}=\frac{- \text { change in void ratio }}{\text { Change in vertical stress }}$
$\mathrm{C}_{\mathrm{V}}($ Root time $)=\frac{0.848 \times(\text { drainage height })^{2}}{\text { time for } 90 \% \text { consolidation }}$
$\mathrm{C}_{\mathrm{v}}($ Log time $)=\frac{0.197 \times(\text { drainage height })^{2}}{\text { time for } 50 \% \text { consolidation }}$
Where: $\mathrm{C}_{\mathrm{v}}=$ Coefficient of consolidation
And the drainage height is computed at 50% consolidation for both cases.
Hydraulic conductivity $=\mathrm{k}_{\mathrm{v}}=\left[\frac{\mathrm{C}_{\mathrm{v}} x \mathrm{a}_{\mathrm{v}} x \text { unit weight of water }}{1+\text { average void ratio }}\right]$
$\mathrm{C}_{\mathrm{a}}=\Delta$ in strain per log cycle of time after the primary is complete.
Where: $\mathrm{C}_{\mathrm{a}}=$ rate of secondary compression

- Tables and graphs of time vs vertical dial reading, Void ratio-pressure, and coefficient of consolidation calculations.
- Corresponding plotted graphs of Dial readings vs time, void ratio vs log of pressure, and coefficient of consolidation vs logarithm of pressure.

3.4.17 Soil Resistivity Test

a) Objective

The objective of the Soil Resistivity Test or Geophysical surveys (Wenner FourElectrode Method) was to determine the conductivity of the soil in ohm meter.

b) Reference Literature

- ASTM G57: 2001
- IEEE Std 81: 2012; and
- BS 7430: 1998

c) Significance

- Soil resistivity influences the plan of an earthing system and is the major factor that decides the resistance to earth of a grounding system. Thus, before designing and installing a new grounding system, the determined location was tested to find out the soil's resistivity.
- Soil resistivity was considered to be a preliminary indicator of the soil's corrosivity and aided in the identification of potential corrosion causing hazards in soils and water, since resistivity is a function of soil moisture and the concentrations of ionic soluble salts. (Roberge, 2000)

d) Apparatus

- Earth Resistivity Tester/Injection test unit
- Ground Grid Conductor Locator
- Flexible Insulated Wire on Easy-to-Spool Reels
- Earth test electrodes (stake), and 240V Portable Generator
- Measuring Wheel/Measuring tapes (100m), and Hammers

e) Procedure

i) The Standard split-barrel Sampler (Split-spoon) was attached to the bottom of the drilling rod, while the top of the drilling rod attached by anvil was used to transfer the hammer load to the drilling rod. The anvil was connected to a guide rod passing through the drop hammer.
ii) The distance required between the pins namely the electrode spacing (a) was in the order $0.3 \mathrm{~m}, 1.0 \mathrm{~m}, 2.0 \mathrm{~m}, 3.0 \mathrm{~m}, 4.0 \mathrm{~m}$ and 5.0 m was measured using PASI 16 GL-N - P100-XN_LP equipment.
iii) The pins were placed in the ground.
iv) The test-leads were connected to the designated pins and earth tester terminals.
v) The earth tester was operated according to the manufacturer's instructions.
vi) The measured resistance was recorded.

f) Expected Results

- The measured resistance value (Ω) and the calculated value of apparent soil resistivity (ρ) using the Wenner (1915) equation:
$\rho=2 \pi \frac{\Delta V}{I}=2 \pi a R$
Where:
$\rho=$ is the apparent resistivity of the soil in Ω
$\mathrm{R}=$ is the measured resistance of the soil in Ω
$\mathrm{a}=$ is the electrode spacing in metres
$\Delta V=$ voltagemeasured (volts), and
$\mathrm{I}=$ injected current (Amps)

Figure 3.4: Standard Earth Resistivity Meter

Figure 3.5: Soil resistivity measurement in the field

3.5 Geotechnical Foundation Design

3.5.1 Evaluation of bearing capacity based on corrected SPT N-values

3.5.1.1 Terzaghi's approach (1967)

The allowable bearing capacities, $\mathrm{q}_{\text {all }}$ were computed using the corrected SPT $\mathrm{N}_{55}{ }^{\prime}$ values from equations (2.14) to (2.16):

$$
\begin{align*}
& \Rightarrow \mathrm{N}^{\prime}{ }_{55}=\left(\frac{\mathrm{p}^{\prime \prime}{ }_{\mathrm{o}}}{\gamma^{\prime} \times \mathrm{depth}}\right)^{\frac{1}{2}} \times \mathrm{Nx} \frac{\mathrm{E}_{\mathrm{r}}}{\mathrm{E}_{\mathrm{rb}}} \times \eta_{2} \times \eta_{3} \times \eta_{4} \tag{2.14}\\
& \Rightarrow \mathrm{q}_{\mathrm{ult}}=5.14 \times \frac{\mathrm{q}_{\mathrm{u}}}{2}=\left[5.14 \times \frac{13.1 \times \mathrm{N}^{\prime}{ }_{55}}{2}\right] \tag{2.15}\\
& \Rightarrow \mathrm{q}_{\text {all }}=\frac{\mathrm{q}_{\mathrm{ult}}}{\mathrm{FS}}=\left(5.14 \times \mathrm{c}_{\mathrm{u}}\right) / F S=\left\{5.14 \times\left[\frac{\left(13.1 \times \mathrm{N}^{\prime}{ }_{55}\right)}{2}\right]\right\} / F S \tag{2.16}
\end{align*}
$$

3.5.1.2 Bowles's approach (1982)

For Bowles' method, equations (2.17) to (2.23) were used as follows:
$\mathrm{q}_{\mathrm{a}}=\left\{\frac{\mathrm{N}}{\mathrm{F}_{2}}\left[\frac{\left(\mathrm{~B}+\mathrm{F}_{3}\right)}{\mathrm{B}}\right]^{2} x \mathrm{~K}_{\mathrm{d}}\right\}$ for $\mathrm{B}>\mathrm{F}_{4}$
$\mathrm{q}_{\mathrm{a}}=\left\{\frac{\mathrm{N}}{\mathrm{F}_{1}} x \mathrm{~K}_{\mathrm{d}}\right\}$ for $\mathrm{B} \leq \mathrm{F}_{4}$
$\mathrm{N}^{\prime}{ }_{55}=\mathrm{C}_{\mathrm{N}} \times \mathrm{N} \times \eta_{1} \times \eta_{2} \times \eta_{3} \times \eta_{4}$
$\mathrm{q}_{\text {all }}=0.73 \times \mathrm{N}^{\prime \prime} \times \mathrm{R}_{\mathrm{D}_{1}} \times \mathrm{S}_{\mathrm{a}}\left[\mathrm{kN} / \mathrm{m}^{2}\right.$ for $\left.\mathrm{B} \leq 1.2 \mathrm{~m}\right]$
$q_{\text {all }}=0.48 \mathrm{xN}^{\prime \prime} \times \mathrm{R}_{\mathrm{D}_{2}} \times\left(\frac{\mathrm{B}+0.3}{\mathrm{~B}}\right)^{2} \times \mathrm{S}_{\mathrm{a}}[$ for $\mathrm{B}>1.2 \mathrm{~m}]$
$R_{D_{1}}=1+0.2\left(\frac{D_{f}}{B}\right) \leq 1.2$ for $\emptyset=0$
$R_{D_{2}}=1+0.1\left(\frac{D_{f}}{B}\right) \leq 1.2$ for $\varnothing=0$

3.5.2 Pile foundation capacity

3.5.2.1 Pile skin resistance capacity

For clay soils, a general method for pile shaft skin resistance established by Poulos (1980) was used as follows:

$$
\begin{equation*}
f_{s}=\alpha S_{u} \tag{3.26}
\end{equation*}
$$

Where:
$f_{s}=$ is shaft skin resistance, implying $f_{s}=100 \mathrm{kPa}$ maximum
$\alpha=$ adhesion factor
$\Rightarrow \alpha=0.45$ (for non - fissured clays)
$\Rightarrow \alpha=0.3$ for fissured clay in bored piles
$S_{u}=$ average undrained shear strength
$S_{u}=\frac{q_{u}}{2}$
Where:
$q_{u}=$ unconfined compressive strength
$\Rightarrow q_{u}=12 \mathrm{x}$ corrected SPT value $\left(N_{55}\right)=12 \times N_{55}$
For cohesionless soils, the equation developed by Bruland (1973) was used for skin resistance calculations as shown in equation (3.29):
$f_{s}=K \bar{q} \tan \delta$
Where:
$\mathrm{K}=$ lateral earth pressure coefficient
$K=\left(1-\sin \emptyset^{\prime}\right)$ from Jáky's $(1944,1948)$ semi-empirical expression for the coefficient of earth pressure at rest
$\emptyset^{\prime}=$ the effective angle of internal friction, derived from SPT results
$\overline{\mathrm{q}}=$ effective overburden pressures
$\delta=$ friction angle, which is equal to effective angle of internal friction

The correlation between normalised blow-count $\left(N_{1}\right)_{60}$ and \emptyset^{\prime} was established by equation (3.30):
$\left(N_{1}\right)_{60}=\frac{N_{55} \times 55}{60 \times \eta_{2}}$

Where:
$\eta_{2}=$ the rod length correction
$N_{55}=$ corrected SPT value

3.5.2.2 Pile end bearing resistance

Poulo's (1980) relation was used for end bearing resistances (for clay), whereas for sands/gravels, Meyerhof's equations (1976) were used, as shown in Table 3.2:

Table 3.2: End bearing of piles (Bowles, 1997)

Soil Type	Relationship	Values	
		Bored Piles	Driven Piles
Clay	$q_{b}=N_{c} S_{u} \omega$	$N_{c}=9$	$N_{c}=9$
		$\omega=1.0$ (Not Fissured)	$\omega=1.0$
		$\omega=0.75$ (Fissured)	-
Sand	$q_{b}=N_{q} \bar{q}$	$N_{q}=20$ (Loose)	$N_{q}=20$ (Loose)
		$N_{q}=30$ (Medium Dense)	$N_{q}=30$ (Medium Dense)
	$\begin{gathered} q_{b}=10 M P a \\ \text { (Maximum) } \end{gathered}$	$N_{q}=60$ (Dense)	$N_{q}=60$ (Dense)
		$N_{q}=100$ (Very Dense)	$N_{q}=100$ (Very Dense)

Based on the above equations, the values for pile skin-resistance and end-bearing resistance recommended for design for bored piles were calculated and recorded in Appendix I (Foundation design calculations for AP 104/5), where the values of effective overburden pressure took account of the backfill.

For any given depth, values of $\alpha, N_{55}, N_{c}, \omega$,
Where: $\alpha=$ adhesion factor
$\Rightarrow \alpha=0.45$ (non-fissured clays); and $\alpha=0.3$ (fissured clay in bored piles)
$N_{55}=$ corrected SPT value; and $\mathrm{N}_{\mathrm{c}}=$ Terzaghi's bearing capacity factors

For cases where clay was the predominate particle, the following values were used:
$\mathrm{f}_{\mathrm{s}}=\alpha \mathrm{S}_{\mathrm{u}}=\alpha\left(\frac{\mathrm{q}_{\mathrm{u}}}{2}\right)=\alpha\left(\frac{12 \times \mathrm{N}_{55}}{2}\right)$
$\mathrm{q}_{\mathrm{b}}=\mathrm{N}_{\mathrm{c}} \mathrm{S}_{\mathrm{u}} \omega=\mathrm{N}_{\mathrm{c}}\left(\frac{\mathrm{q}_{\mathrm{u}}}{2}\right) \omega=\left[\mathrm{N}_{\mathrm{c}}\left(\frac{12 \times \mathrm{N}_{55}}{2}\right) \omega\right]$
Where:
$\mathrm{f}_{\mathrm{s}}=$ Shaft skin resistance; and $S_{u}=$ average undrained shear strength
$\alpha=$ Adhesion factor; and $q_{u}=$ unconfined compressive strength
$\mathrm{q}_{\mathrm{b}}=$ End bearing resistance; and $\mathrm{N}_{\mathrm{c}}=$ Terzaghi’s bearing capacity factors

For a depth with predominate soil particles as sand, the value of effective angle of internal friction was obtained based on the relationship among $\left(N_{1}\right)_{60}$, density index $\left(I_{D}\right)$ and the effective angle of internal friction $\left(\phi^{\prime}\right)$ as follows:
$f_{s}=K \bar{q} \tan \delta=\left[\left(1-\sin \emptyset^{\prime}\right) x \bar{q} x \tan \emptyset^{\prime}\right]$
$\Rightarrow f_{s}=\left[1-\left(\sin \emptyset^{\prime} x \bar{q} x \tan \emptyset^{\prime}\right)\right]($ in radians $)$
$q_{b}=N_{q} \bar{q}$
Where:
$\mathrm{f}_{\mathrm{s}}=$ Shaft skin resistance
$K=$ lateral earth pressure coefficient; $\overline{\mathrm{q}}=$ effective overburden pressures $\delta=$ friction angle, which is equal to effective angle of internal friction $\emptyset^{\prime}=$ the effective angle of internal friction, derived from SPT results $\mathrm{q}_{\mathrm{b}}=$ End bearing resistance; and $N_{q}=$ Terzaghi’s bearing capacity factors

3.6 Structural Foundation Design

3.6.1 Designing codes used

Various design codes were referenced during the prescriptive structural and geotechnical designs and analyses, as briefly described in the following sections.

3.6.2 Steel Lattice Tower Designs

Standards of the International Electro-technical Commission (IEC) and the International Standardisation Organization (ISO) or as referenced in the KIP's technical specifications (IEEE-691, 2001; IS 1200-1, 1974; MoE \& MD, 2013) were used such that all steel lattice tower designs and detailing were to the requirements of the American Society of Civil Engineers' Standard (ASCE 101997) for the Design of Latticed Steel Transmission Structures.

3.6.3 Structural and high strength steel materials

All structural and high-strength steel materials hot-rolled were designed to conform to the steel qualities S 235 JO and S 355 JO respectively according to BS EN 10025: 1990 + A1: 1993 or BS EN 10210 as per BS EN 50341: 2001.

All bolts and nuts with hexagonal heads, flat and spring washers for securing tower members and parts complied to BS 4190, and/or BS EN 20898.

3.6.4 Structural Steel Galvanisation

All steelworks (hot-dip galvanised) were in accordance with BS 729, ASTM A123 and ASTM A-153 to provide a smooth. clean and uniform zinc coating of minimum $10 \mathrm{~g} / \mathrm{m}^{2}$, and a $86 \mu \mathrm{~m}$ thickness for bars, plates, bolts, except threaded work where a uniform minimum zinc coating of $500 \mathrm{~g} / \mathrm{m}^{2}$ was used.

3.6.5 Reinforced concrete design

The design of reinforced concrete structures was in accordance with BS 8110 as per the requirements of the Technical Specifications (IEEE-691, 2001; IS 1200-1, 1974; MoE \& MD, 2013) for transmission works to assess the internal stresses in concrete and in steel reinforcements.

The approved steel bars from the KIP stores were cut and bent as per BS EN 4466, equivalent to ISO 4066 and BS 8666; and complied with the following standards in other respects:

- BS 4449 for hot rolled steel bars.
- BS 4461 for cold worked steel bars.
- BS 4482 for hard drawn mild steel wire.

3.7 Foundation full-scale model construction

3.7.1 Site clearance and setting out

The first task was to check that the permitted area of work arranged by the EPC contractor was verified, cleared of all vegetation and obstructions so that it was suitable for safe and proper placement of construction material and for performing the foundation activity. During setting out, the centre and adjacent line pegs were used as reference for setting out works.

3.7.2 Pit Marking

After completion of the soil classification, geotechnical and structural design works, the limits of excavation were marked by placing excavation pegs with reference to the appropriate foundation drawings.

3.7.3 Foundation excavation

Excavations of the shallow 'pad and chimney' foundations were executed both manually and by use of an excavator. Care was taken to keep the excavated soil at a minimum safe distance of 1.5 m from the pit edges as per the technical specifications to avoid collapse of soil into the pit or exertion of extra overburden pressure on the pit. Where there was a possibility of collapse of the excavation at a depth of 1.5 m or more, shoring was used as per the technical requirements of IEEE691 (2001) and IS 1200-1 (1974) for transmission lines in Uganda (Kim and Cho, 1995; Jang et al., 2007; Bayliss and Hardy, 2011; MoE \& MD, 2013; Sriram and Prasad, 2017). Upon excavation completion, final levels and dimensions were checked and recorded using a dumpy level and measuring tapes, respectively.

3.7.4 Lean concreting application

A 50 mm thick lean concrete was laid after removing all loose material from the pit, to provide a clean and level working surface, and the lean concrete thickness was maintained by fixing steel pegs to the required level.

In case of extra excavation in depth and length, the extra dimensions were filled with lean concrete and not the use of compacted excavated fill soil.

3.7.5 Stub setting

The stubs were set using props and care was taken to firmly anchor the prop plates on to the ground. The 'turn-buckles’ in the prop arrangement were checked and oiled to enable free movement.

3.7.6 Reinforcement assembly

Reinforcement steel bars of sizes in the drawings were cleaned of foreign material, assembled while maintaining the approved rebar spacing and secured using binding wires. As per design, a concrete cover of 100 mm and 50 mm was maintained to reinforcement bars at the bottom and to all other surfaces, respectively.

3.7.7 Formwork assembly

Steel formworks were used for the works, with all connections at the corners checked to prevent mortar from flowing out of the bases. The formwork thicknesses were checked to prevent issues of sagging, cleanliness, and oiling before use.

3.7.8 Concrete casting

Concrete mixing was done insitu by volume batching, and the top surface of the lean concrete cleaned of all debris, and moist with cement slurry in preparation for concrete casting. All fine and coarse aggregates were supplied from approved sources as per the technical specification requirements. The approved project design mix for cube strengths of not less than $25 \mathrm{~N} / \mathrm{mm}^{2}$ for 28 days' strength was followed. The concrete batch of aggregates, cement and water were mixed homogenously in a mixer machine for a minimum of 5 minutes, with every batch being tested for slump checks. Concrete cubes were randomly taken for testing for 7-day and 28-day strengths. To prevent segregation of the constituent concrete material, proper care was taken to transfer the concrete from the mixer to the pit with adherence to the following:

- Maximum free fall height of concrete was limited to less than 2 m depth with the use of chutes for gentle pouring of concrete.
- During pouring, the concrete was vibrated using concrete vibrators to ensure proper compaction; the vibrators were not used as a means of repositioning the placed concrete.

Concreting of 'pad and chimney' of one leg was done in the same day, commencing with the bottom pad, followed by the chimney column sections and the capping.

3.7.9 Additional quality assurance and quality controls

(a) Formwork removal

The formworks were removed after a minimum of 24 hours after concreting as per the requirements of the technical specifications for transmission works. After carefully removing the formworks, the concrete surfaces were checked and repaired for any imperfections such as honeycombing.

(b) Concrete curing

Following the removal of formworks, all the exposed concrete surfaces were protected by application of moist jute covers with continued application of curing water for a minimum of 7-days until the commencement of backfill.

(c) Protection of foundation concrete and stubs

For locations with higher levels of sulphate or chloride, all stubs and concrete surfaces were coated with two coats of an approved bituminous paint.

(d) Backfilling

Suitable backfill material to be compacted were ensured to be well-graded and containing no stones greater than 100 mm in any of its dimensions; and the approved backfill material was laid in layers of 200 mm , with each layer compacted to 91% MDD using mechanical means.

(e) Cube test

During concrete casting, six (6) concrete cubes of $150 \times 150 \times 150 \mathrm{~mm}$ sizes were prepared on site in the mould in 50 mm layers, with each layer being thoroughly compacted with a 380 mm long, $25 \mathrm{~mm}^{2}$ ramming face, and 2.8 kg smooth steel rod. After 24 hours, cubes were transferred to the store for curing and subsequent testing as per BS EN 12390-1 (2012) and BS EN 12390-2 (2009) to check the concrete cube strengths in conformity with the required 1.4 $\mathrm{kg} / \mathrm{mm}^{2}\left(13.72 \mathrm{~N} / \mathrm{mm}^{2}\right)$ for 7 days and $2.5 \mathrm{~kg} / \mathrm{mm}^{2}\left(25 \mathrm{~N} / \mathrm{mm}^{2}\right)$ for 28 days, respectively. Results of concrete cube tests are in Appendix C.1.

(f) Site clean-up

After completion of all foundation activities, the sites were cleaned of all surplus excavated material and construction materials; and the work sites were reinstated wherever possible, to the original ground contours.

3.8 Static Load Test methodology

3.8.1 Test Procedure

The constructed full-scale foundation models were tested to assess their insitu load carrying capacities and the foundation load responses to the design load as per IEC 61773:1996 for overhead lines testing of foundation structures.

3.8.2 Reference Literature

- ASTM D3689: 2013 (Static Axial Tensile (or uplift) Load Test)
- ASTM D1143: 2013 (Static Axial Compressive Load Test)
- ASTM D3966: 2013 (Lateral Load Test)
- IEC 61773:1996 or COMESA/FDHS 293: 2007

3.8.3 Foundation loads applied

The support system consisted of a 7 m long reaction beam supported either side on sets of trapezoidal precast concrete slabs for withstanding any expected deformations. It was arranged to achieve an 8° inclination angle. The Appendix D details the graphs of load vs time, load vs displacement, and displacement vs time.

3.8.4 Test Apparatus

Following apparatus were used among others:

- Test loading beam, and Reference beams
- Hydraulic jack, and Micrometre
- Hydraulic pressure gauge

3.8.5 Arrangement of Apparatus

a) Placement of Testing Beam

As per the specifications, the test loading beam was checked to be strong enough to take the test load of at least 1.5 times the design load applied. The reaction system was placed on a hard base to provide the required support, and at a suitable distance to prevent the influence of foundation uplift. The stub was connected to the loading beam by a system of bolts. The hydraulic pressure gauge that was fitted to the hydraulic jack measured the load applied. The entire test apparatus system was arranged and designed in such a way that it could not alter the prescriptively designed behaviour of the foundation while the load was being applied. The clear distance between the reaction supports was more than the minimum allowable distance (L) as given by:
$\mathrm{L}=\mathrm{B}+0.7 \mathrm{D}$ (For Pad and Chimney Foundations)

Where:
$\mathrm{L}=$ Nearest point between points of reaction supports
$\mathrm{B}=$ Width of foundation; and $\mathrm{D}=$ Depth of foundation
The clear distance between the reaction supports and the test pile-foundation was more than the minimum distance (L) given by:
$\mathrm{L}=3 \mathrm{e}$ or 2, whichever was greater (For Piled Foundations)
Where: $\mathrm{e}=$ diameter of the test piled foundations

b) Placement of reference beam

The reference beam was assembled stiff enough to resist the instrumentation without excessive deflection. The dial gauge was connected to the reference beam, and the machined plates fixed by bolting to the foundations to provide a smooth surface to measure the displacements. The depths of the supports to the reference beams were 1 m to 3 m depending on soil type, and whereas in rock, it was reduced so that the vertical and lateral movements were restrained.

The reference beam support was maintained to be not less than (C):
$C=0.35 \mathrm{D}+0.5$
Where:
C = support of reference beam distance to edge of foundation
$\mathrm{D}=$ depth of foundation
Support of reference beam was maintained not less than either of:
$\mathrm{C}=1.0 \mathrm{e}+0.5$ or 1.5 , whichever was greater
$C=2.0+0.5 e$ (in metres), for laterally loaded piles
Where:
C = support of reference beam distance to edge of foundation
e = diameter of test pile foundation

3.8.6 Assembly of foundation test setup

The figures below show the schematic layout of the test foundations.

Figure 3.6a: Static Axial Uplift/Tensile Load Test (MoE \& MD, 2013)

Figure 3.6b: Static Axial Uplift/Tensile Load Test (MoE \& MD, 2013)

Figure 3.7: Lateral Load Setup (FHWA-SA-91-042, 1992)

Figure 3.8: Compressive Load Test (FHWA-SA-91-042, 1992)

The elevations of the upper 50 mm thick metal plate above the reaction beam and the lower 50 mm thick metal plates were established to enable the proper configuration of the loading hydraulic jack, the load cell/column and test foundation to be set up taking into consideration the limit uplift distances and reaction beam deflections. The loading hydraulic jack was a HI-FORCE jack with a capacity of 500 ton. An electric pressure pump connected to the loading jack to supply the load to the jack was utilised. A Macklow Smith load cell was placed between the jack and the upper 50 mm thick metal plate to read off the load being applied. Three displacement dial gauges were fixed on a reference frame with support rods and rested on glass plates placed over the foundation stub. The reference frame was designed, fabricated, and placed as per the guidelines of IEC 61773 (1996). The plans and elevations of the test foundations, test apparatus, reaction systems, and fixed reference points are shown in Appendix D.

3.8.7 Load application

The load to the hydraulic jack was applied by a pressure pump fitted with a pressure gauge. A load cell was placed between the jack and the upper 50 mm thick metal plate. The load cell was mainly used to measure and monitor the amount and stability of force applied to the test beam. The upper 50 mm thick metal plate was connected to the lower 50 mm thick metal plate below the reaction beam, which was in turn connected to the double angle metal connection of the foundation stub applying the loading force. In the static axial uplift load test arrangement, the reaction beam was resisted from movement by the trapezoidal concrete support slabs or support piles. This arrangement, therefore, resulted in the load being applied by the jack to lift the test foundation, and the resulting displacement in the foundation measured by the displacement gauges.

3.8.8 Test Procedure

After the test cubes of the insitu foundation had passed the required design compressive strength after 28 days, the test pile was then tested.

During the static uplift/tensile, compressive, and lateral load tests, the loads were applied axially to the test foundation bases and columns/‘chimneys'.

a) Loading Procedure

Initially, a load of 10% of design load was applied to check the stability of the test equipment. Load was applied in steps, in percentage (\%) of the target load of $25,50,70,80,90,100$; and the loads were maintained for 10 minutes for each loading step. However, the designed load was maintained for 30 minutes to check that no significant movements had occurred in the foundation. Further load increments of 10% were made beyond the design loads until failure point
or up to 130% (whichever occurred first), with each loading step maintained for 3 minutes. However, for cases of cohesive soils, the loads were maintained for 30 minutes each starting from the loading steps of 70% and above.

The application of the load was in stages of 25% and 10% of working load in the loading sequence. Loading was applied to 130% of the working load in the sequence of $25 \%, 50 \%, 70 \%, 80 \%, 90 \%, 100 \%, 110 \%, 120 \%$, and 130%. Two units of measure were used to establish the amount of load being applied, namely pressure pump gauge and the load cell.

b) Measurement of Displacements

A reference frame was placed over the test foundation stub in addition to three (3) dial gauges equidistant from each other. The gauges were fixed to the reference frame and the displacement-measuring rod placed barely touching the glass plates on top of the foundation stub. The measurement of the foundation's displacements was carried out by reading the displacement on the dial gauges. Base readings at the commencement of the test were first taken after the application of pressure equivalent to less than 10% of the working load and just enough for making contact between the load cell and the test beam. Thus, subsequent readings were deducted from these base readings to establish the foundation's displacements. The displacement measurements were taken at 10minute intervals for loads starting at 25% up to 90%, and at 30 -minute intervals for the load at 100%, and at 3 -minute intervals for loads at $110 \%, 120 \%$ and 130% of the working loads respectively. The loading cycle, records of tests such as field measurements and plots of the load vs time, load vs displacement, and displacement vs time, are all shown in Appendix D.

c) Primary measurement system

Mechanical dial gauges with a recommended resolution of 0.1 mm or less and a recommended range of travel of 50-150 mm, preferably 150 mm , were used for design and proof tests. The dial gauges were clamped to the reference beam in such a manner that the gauge expanded as the load was applied, in order to prevent damage to the instrumentation in the event of a sudden failure of the foundation or equipment. During the tests, a minimum of two gauges were mounted equidistant from the vertical foundation axis and from each other.

d) Secondary measurement system

As a control-check on the primary measurement system, a secondary measurement system was used in the test. A theodolite and graduated scale were used to measure the displacements in addition to the main dial gauges.

3.8.9 Test Evaluation

The test results were evaluated in relation to the "as-built "conditions; since prior to the tests, the load capacities of the foundations were prescriptively calculated using the parameters obtained from the geotechnical investigations.

a) Acceptance criteria

The acceptance criteria from the static load tests were based on the load and displacement results from design test achieving the requirements of IEC 61773 (1996) for the design values to be deemed as satisfactory. However, in cases of premature failure, the cause of failure would be reviewed and suitable modifications to design and procedure of test made.

b) The failure criteria for Loading tests

The test foundation was deemed to have failed under the static load test methods if the following occurred as per IEC 61773 (1996):

- Need for continuous jacking to maintain the load.
- When the uplift of foundation exceeded 25 mm or the calculated values.
- When compression settlement of the foundation exceeded 25 mm .
- When lateral displacement of the foundation exceeded 50 mm .

c) Insitu foundation capacity determination

From the analysis of the hyperbolic graph, the derivative of the equation of the line of 'best-fit', was considered to be the slope $\left(C_{1}\right)$ as shown below:
$\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{c} \quad$ (Equation of the line of best fit)
Slope $C_{1}=\frac{d y}{d x}$

According to IEC 61773 (1996) standard, the actual insitu load capacity $\left(R_{c}\right)$ of the foundation was determined from the hyperbolic model graphs using the empirical equation of the Chin-Kondner Extrapolation (1971) shown below:

Load Capacity $=\mathrm{R}_{\mathrm{c}}=\frac{1}{\mathrm{C}_{1}}($ in kN$)$

Table 3.3: Inclined foundation load test details

S/No	Inclined Foundation Load Test Details				
1	Foundation number	KL 30 (B103+5)	AP 108/15	AP 108/20	AP 104/5
2	Foundation coordinate	$\begin{aligned} & \hline \text { N426605.777, } \\ & \text { E246178.091 } \end{aligned}$	$\begin{array}{l\|} \hline \text { N194777.676, } \\ \text { E391575.254 } \end{array}$	$\begin{aligned} & \text { N192810.148, } \\ & \text { E391873.474 } \end{aligned}$	N212510.472, E400765.294
3	Foundation tower type	DB-Waterlogged	ST-Poor soil	DA-Good soil	DA-Pile
4	Transmission Line	132 kV	400 kV	400 kV	400 kV
5	Foundation base level	- 4.50 m	- 2.75 m	-3.50m	-12.775m
6	Foundation base size	$4.5 \mathrm{~m} \times 4.5 \mathrm{~m}$	$4.39 \mathrm{~m} \mathrm{x} \mathrm{4.39m}$	$2.64 \mathrm{~m} \times 2.64 \mathrm{~m}$	Ø 900 mm
7	Stub top	+0.5m	$+0.5 \mathrm{~m}$	$+0.5 \mathrm{~m}$	$+0.5 \mathrm{~m}$
8	Pile head size	$0.55 \mathrm{~m} \times 5 \mathrm{~m}$ (inclined)	0.60m x 3.05m (inclined)	0.60m x 3.8m (inclined)	$1.2 \mathrm{~m} \times 1.2 \mathrm{~m} \times 2.225 \mathrm{~m}$
9	Stub angle	6.84 degrees	8 degrees	8 degrees	90 degrees (Vertical)
10	Working Load (WL)	962.26 kN	727.20 kN	594.45 kN	$\begin{aligned} & 555.69 \mathrm{kN} \text { (Tension), } 828.52 \mathrm{kN} \\ & \text { (Comp) \& } 180.59 \mathrm{kN} \text { (Lateral) } \end{aligned}$
11	Maximum Test Load (130% of WL)	1250.94 kN (127.56 ton)	945.36 kN (96.4 ton)	772.785 kN (78.8 ton)	$\begin{aligned} & \hline 722.397 \mathrm{kN} \text { (Tension), } 1077.08 \\ & \mathrm{kN} \text { (Comp) \& } 234.77 \mathrm{kN} \text { (Lateral) } \end{aligned}$
12	Test Load Type	Tensile	Tensile	Tensile	Tensile, Compressive \& Lateral
13	Loading system	Reaction Beam	Reaction Beam	Reaction Beam	Reaction Beam
14	Testing standard	IEC 61773: 1996	IEC 61773: 1996	IEC 61773: 1996	IEC 61773: 1996

3.9 Schematic diagram for methodological approach

Figure 3.9: Schematic diagram for methodological approach

CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the results and analyses of field data from four (4) overhead transmission line test foundations are presented. Since the test foundation is a composite structure comprising the soil upon which the footing is anchored and the reinforced-concrete structure; therefore, the foundation's constitutive behaviour is governed by understanding some if not all of the soil's properties and foundation's load-bearing characteristics under full-scale static load test.

4.2 Insitu Geotechnical Tests

4.2.1 Test Trial Pits and Borehole Pits

Test trial pits and/or borehole pits were done to determine the location of ground water tables and soil strata descriptions as summarised in Tables 4.1 and 4.2 respectively, with more details found in the Appendices B. 1 and B.2.

Ground water tables were encountered above the base of the footing in the swampy locations of KL 30 and AP 104/5 at levels of 0.3 m and 1.14 m respectively; and ground water tables were below the base of the footings in locations AP 108/15 and AP 108/20 at levels of below 10 m and 4 m respectively below existing ground level (Das and Sobhan, 2018).

The results from above water table were used in computations of the soil's effective unit weights (γ^{\prime}), magnitudes of unit surcharge (q) and corrections for ground water table effects on bearing capacities as per equations 2.33 to 2.37 , and subsequent bearing capacities as discussed in sections 4.2.2, 4.2.3, 4.3.2 and 4.3.3.

However, insitu soil profile descriptions in Appendices B. 1 and B. 2 were used as a precursor assessment to the final soil grading and classifications as per USCS and/or BS 5930 systems discussed in section 4.3.4.

Table 4.1: The ground water table depths from the project areas

Foundation	Excavation Pit	Water table depth from GL	Foundation base below GL		
Location	Type	Depth	Type	(below 10m)	2.75 m
AP 108/15	Poor Soil	10 m	Borehole	Nil (bel	
AP 108/20	Good Soil	3 m	Trial Pit	Nil (below 4m)	3.50 m
KL 30	Waterlogged	10 m	Borehole	1.140 m	4.50 m
AP 104/5	Pile	20 m	Borehole	0.300 m	$\sim 12.80 \mathrm{~m}$

Table 4.2: The summary of soil strata descriptions from the project areas

Foundation		Insitu soil strata Details (Soil Profile Table - Pits)	Soil Classifications (USCS \& BS 5930 -Lab)
Location	Depth (m)		
AP 108/15	2.45-4.2	Grey-dense clayey Sand	Silty SAND (SM)- USCS
AP 108/20	0.1-3.5	Brownish-orange laterite (Murram*) with duricrust: *(medium-dense gravelly-Sand)	Clayey SAND with gravel (SC)- [USCS classification]
KL 30	4.5-6.5	Moist reddish brown, mottled grey, hard gravelly-Clays	Gravelly CLAYS of intermediate plasticity (CI) [BS 5930 classification]
AP 104/5	12.7-15.0	Slightly moist greyish brown, medium-dense clayey Sand	Clayey SAND (SC) [USCS classification]

4.2.2 Dynamic Probing Light

Dynamic Probing Light (DPL) tests were done to determine the blows per 10 cm penetration (N_{10}) readings, consistency descriptions, and computations of unit point $\left(r_{d}\right)$ resistance, and dynamic point $\left(q_{d}\right)$ resistance/soil bearing capacity as summarised in Table 4.3 below, with more details in Appendix B.3. The DPL's N_{10} readings of 10 to 54 under the respective penetration rates (e), corresponded to granular soils of medium-dense consistency especially coarse-grained sandy soils as shown in Table 2.8 in section 2.6.5 (BS EN 22476-2, 2005; Nilsson, 2012).

The DPL test results were used in the determination of the soil's preliminary consistency description, unit point resistance and dynamic point resistance (bearing capacity) as shown in in section 2.6.5.

Table 4.3: The DPL result summary for AP 108/20

Selective Depth (m)	$\mathbf{M}_{\mathbf{1}} \mathbf{(k g)}$	$\mathbf{N}_{\mathbf{1 0}}$	\mathbf{e}	$\mathbf{r}_{\mathbf{d}}(\mathbf{M p a})$	$\mathbf{q}_{\mathbf{d}}(\mathbf{M p a})$
1.0	10.252	10	0.010	4.90	2.7
2.0	10.252	54	0.002	26.46	13.2
3.0	10.252	13	0.008	6.37	2.9
3.5	10.252	14	0.007	6.86	2.9

Where:

$\mathrm{M}_{1}=$ mass of the hammer; and $\mathrm{N}_{10}=$ blows per 10 cm penetration
$e=$ penetration rate (m per blow); and $\mathrm{r}_{\mathrm{d}}=$ unit point resistance; $\mathrm{q}_{\mathrm{d}}=$ dynamic point resistance

4.2.3 Standard Penetration Testing

The SPT test was done to determine the soil's consistency descriptions based on the N -values, and the parameters for bearing capacity calculations as summarised in Table 4.4, with more details found in Appendix B.4.

The SPT N-value of the fine-grained soils at KL 30 of 100, corresponded to a "hard" soil consistency description, whereas the N -values of the coarse-grained soils at AP 108/15 and AP 104/5 were 24 and 27 respectively, both corresponding to "medium-dense/compact" soil consistency descriptions according to Tables 2.5 and 2.5 in section 2.6.4. The SPT test results obtained, were thus, used in the determination of the soil's preliminary consistency descriptions based on the N values (BS 5930, 1999) and parameters for bearing capacity analysis (Bowles, 1997; Das, 2016; Das and Sobhan, 2018).

Table 4.4: The SPT result summary for locations

Locations	SPT N-value	Corrected \mathbf{N}_{55}	Soil consistency	Soil Classification (BS 5930 and USCS)
KL 30	100	77	Hard	Gravelly clays of intermediate plasticity (CI) -
AP 108/15	24	19	Medium-dense	SS 5930
AP 104/5 Sand (SM) - USCS				
27	20	Medium-dense	Clayey Sand (SC)- USCS	

4.2.4 Soil Resistivity Testing

The soil resistivity test was done to determine the corrosiveness of the soils based on the apparent resistivity values as summarised in Tables 4.5 and 4.6 below, with more details found in Appendix B.5. The resistivity values showed that the soils at locations KL 30, AP 108/20 and AP 104/5 were essentially non-corrosive, whereas the soil at AP 108/15 was highly corrosive.

The above soil resistivity results were used as a preliminary and non-conclusive test to provide generalised insitu environmental exposure conditions which may lead to steel depassivation and corrosion and affect the structural design of the reinforced concrete foundations. Thus, for a more conclusive study, chemical analysis-tests were deemed necessary regardless of the level of corrosiveness encountered as discussed in section 4.3.6 (Robinson, 1993; Roberge, 2000; BS EN 206, 2013; Das, 2016).

Table 4.5: The insitu soil resistivity result summaries

S/No	Locations	Average of soil resistivity $(\mathbf{\Omega} \boldsymbol{m})$	Soil corrosiveness description (Roberge, 2000)
1	KL 30	220.5	Essentially non-corrosive
2	AP 108/15	29.845	Highly corrosive
3	AP 108/20	1201.472	Essentially non-corrosive
4	AP 104/5	285.192	Essentially non-corrosive

Table 4.6: Soil resistivity explanation (Robinson, 1993; Roberge, 2000)

S/No	Soil Resistivity ($\mathbf{\Omega} \cdot \mathbf{m})$	Soil Corrosiveness
1	Greater than 200	Essentially non-corrosive
2	$100-200$	Mildly corrosive
3	$50-100$	Moderately corrosive
4	$30-50$	Corrosive
5	$10-30$	Highly corrosive
6	Less than 10	Extremely corrosive

4.3 Laboratory Tests on soil samples

4.3.1 Specific gravity (Particle Density)

The specific gravity (Particle Density) test was done to provide a general preliminary description of the soil as a component of its index properties before conducting the particle size distribution/grading and soil classification tests, as summarised in Tables 4.7 and 4.8, with more details in Appendix B.6.

The obtained specific gravity values showed the soils at location AP 108/15 to be sand with silty particles, AP $108 / 20$ to be gravelly soil with clay mineral compositions, KL 30 to be clay with gravel particles, and AP 104/5 to be sand with clay compositions. These descriptions are comparable but inconclusive to the final results as per the Unified Soil Classification System (USCS) and/or BS 5930 soil classification system as discussed in section 4.3.4. For that reason, higher specific gravity values give higher load carrying capacities and thus, more strength for foundation soils since an increase in specific gravity increases the shear strength parameters and the soil's suitability as a construction material (Tuncer and Lohnes, 1977; Roy and Dass, 2014; Surendra and Sanjeev, 2017).

Table 4.7: Summary of specific gravity values on site

S/No	Location	$\mathbf{G}_{\mathbf{s}}$ Range $\left(\mathbf{M g} / \mathbf{m}^{\mathbf{3}}\right)$	Type of soil (Generalised)	Soil Classifications (USCS \& BS 5390)
1	AP 108/15	$2.370-2.777$	Sand with silty particles	Silty sand (SM)- USCS
2	AP 108/20	$2.380-2.483$	Gravelly soil with clay mineral compositions	Clayey sand with gravel (SC)- USCS
3	KL 30	$2.453-2.739$	Clay with gravel particles	Gravelly clays of intermediate plasticity (CI)- [BS 5930]
4	AP 104/5	$2.64-2.73$	Sand with clay composition	Clayey sand (SC)- USCS

Table 4.8: Specific gravities of some soils (Das, 2016; Das and Sobhan, 2018)

S/No	Type of Soil	Specific Gravity (G_{s}) range ($\mathrm{Mg} / \mathrm{m}^{\mathbf{3}}$)
1	Gravel	2.65-2.68
2	Quartz Sands	2.64-2.66
3	Silty	2.67-2.73
4	Clay	2.70-2.90
5	Chalk	2.60-2.75
6	Loess	2.65-2.73
7	Peat/Organic soils	1.30-1.90 (Less than 2.0)
Clay soil mineral compositions		
8	K-Feldspars ${ }^{(1)}$	2.54-2.57
9	Montmorillonite ${ }^{(2)}$	2.35-2.70
10	Illite ${ }^{(2)}$	2.6-3.0
11	Kaolinite ${ }^{(2)}$	2.6-2.68
12	Biotite ${ }^{(1)}$	2.8-3.2

References: ${ }^{(1)}$ Lambe and Whitman, 1969; ${ }^{(2)}$ Mitchell, 1993

4.3.2 Direct Shear Test

The direct shear test was done to determine the soil's cohesion (c) and the angle of internal friction (ϕ) used in the computation of the soil's bearing capacities as summarised in Table 4.9, with more details in Appendix B.8.

The value of friction angle (ϕ) was observed to be greater than cohesion (c) (i.e $\phi>\emptyset$) at 5.2 m depth, and friction angle (ϕ) less than cohesion (c) (i.e $\phi<\emptyset$) at 10.4 m depth, despite both soil strata being classified as clayey-sand
soils. This difference is indicative of an increased clay and silt composition in the bottom soil strata because they induce the sand with increased interlocking behaviour/cohesion (Smith, 2014; Das, 2019).

The obtained results of cohesion (c) and friction angle (ϕ) were used in the computation of the soil's bearing capacities, the pile skin and end-bearing resistances using the lateral earth pressure coefficient as discussed in sections 2.6.6, 2.6.7, and 3.7.2.

Table 4.9: Direct shear summary results for AP 104/5

S/No	Depth	Width	Clay and silt (\%)	Bulk Density	Cohesion (c)	Friction angle (ϕ)	Bearing capacity $\left(\boldsymbol{q}_{\text {all }}\right)$
	\mathbf{m}	\mathbf{m}	$\mathbf{M g} \mathbf{m}^{3}$	$\mathbf{k P a}$	\circ	$\mathbf{k P a}$	
1	5.20	1	43.8%	1.790	12.3	21	342
2	10.40	1	63.2%	1.745	18.5	15	348

Note: * PSD: Particle Size Distribution or soil grading

4.3.3 Consolidation Tests

The one-dimensional consolidation test was done to determine the coefficients of consolidation (C_{v}) and volume compressibility (m_{v}) used in the subsequent explanations of the probable volume levels of compressibility (compression index) and a generalised description of the possible underlying soil strata type as summarised in Tables 4.10 to 4.14, with more details in Appendix B.8.

The obtained consolidation C_{v} value of $0.0042 \mathrm{~cm}^{2} / \mathrm{s}$ in the range of 0.00032 to 0.0032, corresponding to a medium category of consolidation, typical of $15-25 \%$ clays of the low plastic clay (CL) USCS classification type; whereas, the m_{v} values of $0.187 \mathrm{~m}^{2} / \mathrm{MN}$ in the range of $0.25-0.125$ (Table 4.12) and/or 0.1-0.3 (Table 4.13) corresponded to stiff or firm clays of consolidated lake deposits/lacustrine/swampy
soils having medium compressibility properties of 0.05 to 0.15 compression index (C_{c}) (Smith, 2014; Carter and Bentley, 2016).

Table 4.10: Consolidation Test Results for AP 104/5

Test Depth (m)	$\left(\mathbf{e}_{\mathbf{0}}\right)$	$\left(\gamma_{\mathbf{b}}\right)$	$\left(\mathbf{c}_{\mathbf{v}}\right)$	$\left(\mathbf{m}_{\mathbf{v}}\right)$	$\left(\mathbf{p}_{\mathbf{0}}\right)$
	$(-)$	$\mathbf{(M g / \mathbf { m } ^ { 3 })}$	$\left(\mathbf{c m}^{2} / \mathbf{s}\right)$	$\left(\mathbf{m}^{2} / \mathbf{M N}\right)$	$\mathbf{(k P a)}$
$10.4-10.7$	0.752	1.745	0.0042	0.187	201

Where:
$\mathrm{e}_{\mathrm{o}}=$ Initial void ratio; $\gamma_{\mathrm{b}}=$ Initial bulk density; $\mathrm{c}_{\mathrm{v}}=$ Coefficient of consolidation
$\mathrm{m}_{\mathrm{v}}=$ Coefficient of volume compressibility; $\mathrm{p}_{\mathrm{o}}=$ Pre-consolidation pressure

Table 4.11 Coefficients of consolidation (George et al., 2006; Carter, 2016*)

Range of $\mathbf{C}_{\mathbf{v}}$	Category	Typical material	Soil classification (USCS)
<0.000032	Very Low	-	-
$0.000032-0.00032$	Low	$>25 \%$ Clay	Medium plasticity clays (CL- CH), and Volcanic silt (MH)
$0.00032-0.0032$	Medium	$15-25 \%$ Clay	Low plasticity clay/mud (CL)
$0.0032-0.032$	High	$<15 \%$ Silt	Organic silt (OL)
>0.032	Very High	-	-

Note: $1 \mathrm{~m}^{2} /$ year $=(5 / 15768) \mathrm{cm}^{2} / \mathrm{s}$; and $C_{v}=$ coefficient of consolidation

* Carter and Bentley, 2016 [Adapted from Holtz and Kovacs (1981)]

Table 4.12: Ranges of coefficient of vol. compressibility ($\boldsymbol{m}_{\boldsymbol{v}}$) (Smith, 2014)

S/No	Soil type	$\boldsymbol{m}_{\boldsymbol{v}}\left(\mathbf{m}^{2} / \mathbf{M N}\right)$
1	Peat	$10.0-2.0$
2	Plastic clay (normally consolidated alluvial clays)	$2.0-0.25$
3	Stiff clay	$0.25-0.125$
4	Hard clay (boulder clays)	$0.125-0.0625$

Table 4.13: Coefficient of vol. compressibility (Carter and Bentley, 2016)

	C	Compressibility category	Type of soil material indicated
<0.05	0.025	Very Low compressibility	Hard, over-consolidated glacial till, stiff weathered rocks and hard clays
0.05-0.1	0.025-0.05	Low compressibility	Stiff Glacial Till (Boulder Clay), marls, very stiff tropical residual clays

$\mathbf{M}_{\mathbf{v}}$	$\mathbf{C}_{\mathbf{c}}$	Compressibility category	Type of soil material indicated
$\mathbf{m}^{2} / \mathbf{M N}$		Mirm clays of consolidated swampy/lake deposit/lacustrine soils, glacial outwash clays, weathered marls, firm glacial till, normally consolidated clays at depth, firm tropical residual clays	
$0.1-0.3$	$0.05-0.15$	Medium compressibility	
$0.3-1.5$	$0.15-0.75$	High compressibility	Poorly consolidated alluvial clays such as estuarine deposits, and sensitive clays
>1.5	$0.75-5+$	Very High compressibility	Highly organic alluvial clays and peats

Where:
$C_{c}=$ compression index; $m_{v}=$ coef. of vol. compressibility; $a_{v}=$ coefficient of compressibility $m_{v}=\left(\frac{a_{v}}{1+e_{o}}\right)=\left[\left(\frac{\delta_{e}}{\delta_{p}}\right) x \frac{1000}{\left(1+e_{o}\right)}\right]$ (Adopted from Bowles, 1997)

4.3.4 Particle Size Distribution (Soil grading)

The soil grading test was done to determine the distribution of the different particlesizes in the soil mass, and the gradation of the soil as summarised in Table 4.14, with more details found in Appendix B.6.

The particle size analysis showed that the soils at the formation levels of the locations AP 108/15 were of poorly graded silty sand (SM), AP 108/20 were well graded clayey sand with gravel (SC), AP 104/5 were poorly graded clayey sand (SC) using the USCS classification system; whereas, the soils at KL 30 were gap graded gravelly clay (CI) as per the BS 5930 classification system.

The above gradation and soil classification results were used to finally confirm the previously inconclusive descriptions from the Test trial pit and/or borehole soil strata, parts of the preliminary soil consistency descriptions using DPL, specific gravity soil generalisations, material type identifications using the consolidation's m_{v} and C_{v} values, and the general soil type descriptions under plasticity index (PI) interpretations as discussed in sections 4.2.1, 4.2.2, 4.3.1, 4.3.3, and 4.3.5 respectively (Smith, 2014; Das, 2016; Das and Sobhan, 2018).

Table 4.14: Summary of grading of locations

S/No	location	Soil Grading	Formation Level	Soil Classification
1	AP $108 / 15$	Poorly graded	2.75 m	SM (USCS)
2	AP $108 / 20$	Well-graded	3.50 m	SC (USCS)
3	AP $104 / 5$	Poorly graded	$\sim 12.80 \mathrm{~m}$	SC (USCS)
4	KL 30	Gap-graded	4.50 m	CI (BS 5930)

4.3.5 Plasticity Index Interpretations

The plasticity index (PI) values derived from the Atterberg limit tests, were done to classify the cohesiveness and swell potentials of fine-grained soils in the general context when correlated with other soil properties, as summarised in Tables 4.15 to 4.17 below, with more details found in Appendix B.6.

The Atterberg test showed that the soils at location AP 108/15 had PI values in the range of 7-17, corresponding to medium-plastic soils of cohesive silty-sand type, whereas AP 108/20, KL 30 and AP 104/5 had soils with PI values greater than 17 (>17), corresponding to high plastic soils of cohesive clay type. Meanwhile, all the above locations had Liquid Limit (LL) values less than 50 (<50), corresponding to fine-grained soils with low swell potentials.

The above results of PI and LL interpretations were used in complementing the final classification and grading descriptions of the fine-grained soils as discussed in sections 4.3.4 (Das and Sobhan, 2018; Das, 2019).

Table 4.15: Atterberg limit summaries for the sites at the formation level

S/No	Location	Atterberg Limits		Formation Level	PI value range (From Table 4.16)	
		LL	PL			$7-17$
1	AP 108/15	24.7	12.5	12.20	2.75 m	>17
2	AP 108/20	44.8	21.4	23.4	3.50 m	>17
3	KL 30	38.4	16.6	21.8	4.50 m	>17
4	AP 104/5	34.5	14.8	19.7	$\sim 12.80 \mathrm{~m}$	

Table 4.16: PI interpretations and cohesiveness (Surendra and Sanjeev, 2017)

S/No	PI	Degree of Plasticity	Degree of Cohesiveness	Soil Type
1	0	Non-Plastic	Non-cohesive	Sand
2	<7	Low Plastic	Partly cohesive	Silt
3	$7-17$	Medium Plastic	Cohesive	Silty-Sand
4	>17	High Plastic	Cohesive	Clay

Table 4.17: Atterberg Limits \& Swell Potential (Pitts, 1984; Kalantari, 1991)

S/No.	Liquid Limit (LL)	Plasticity Index (PI)	Swell Potential (SP)
1	<50	<25	Low
2	$50-60$	$25-35$	Marginal
3	>60	>35	High

4.3.6 Chemical Analysis Tests

The chemical tests were done as a more conclusive test following the preliminary soil resistivity test to determine the presence of the corrosion-causing chemicals of sulphates and/or chlorides, and pH values so as to describe the locations' environmental exposure conditions as summarised in the Tables 4.18 to 4.20 below, with more details found in Appendix B.7.

The SO_{4} results showed that the soils at locations AP 108/15, AP 108/20 and AP $104 / 5$ had values $\leq 3000 \mathrm{mg} / \mathrm{kg}$ ($\leq 0.3 \%$ by weight) corresponding to XA1 exposure condition of slightly aggressive chemical environments; whereas, the KL 30 ground water had values of $\mathrm{SO}_{4}>600 \mathrm{ppm}$, corresponding to XA2 exposure condition of moderately aggressive chemical environment.

The pH values for AP $108 / 15$ and AP $108 / 20$ were 5.38 and 5.22 respectively, corresponding to XA2 exposure condition of moderately aggressive chemical environment, whereas KL 30 and AP 104/5 had pH values of 6.27 and 6.10 respectively, corresponding to XA1 exposure condition of slightly aggressive chemical environments. Hence, the chemical analysis and pH environmental
conditions were reconciled to provide XA2 exposure conditions for all locations based on "worst-case scenario" approach (BS 4027, 1996; Stark, 2002; Michael et al., 2005; BRE-SD-1, 2005; BS EN 206, 2013).

The chemical analysis and pH test values were used to conclusively determine the corrosion-causing sulphates, chlorides and pH conditions following the preliminary soil resistivity tests as discussed in section 4.2.4.

In order to inhibit the effects of chlorides to form insoluble chloro-aluminates $\left(\mathrm{C}_{3} \mathrm{~A}\right)$ upon combining with Tricalcium Aluminate $\left(3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ in concrete, Sulphate Resistant Cements (SRC) of strength class 42.5 N and a 3.5% limited $\mathrm{C}_{3} \mathrm{~A}$ content are used under moderate water-cement ratios of 0.40 to 0.50 as illustrated in Figure 4.1 (Stark, 2002).

Table 4.18: Insitu chemical test results at the formation level

S/No	Location	Sulphate content (\% by weight)	Chloride content $(\mathbf{g} / \mathbf{l})$	pH value	Sample type
1	AP 108/15	$0.05 \%(500 \mathrm{ppm})$	$0.007(7 \mathrm{ppm})$	5.38	Soil
2	AP $108 / 20$	$0.06 \%(600 \mathrm{ppm})$	$0009(9 \mathrm{ppm})$	5.22	Soil
3	KL 30	$0.0686 \%(686 \mathrm{ppm})$	$10(10,000 \mathrm{ppm})$	6.27	Ground water
4	AP 104/5	0	$0.021(21 \mathrm{ppm})$	6.10	Soil

Where: $1 \mathrm{~g} / \mathrm{L}=1000 \mathrm{ppm}$; and $1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}=0.001 \mathrm{~g} / \mathrm{L}$

Table 4.19: Measured results interpretations for sulphates

S/No	Location	Measured SO 4 values (ppm)	BS EN 206 (2013) SO d values (ppm)	Exposure condition (BS EN 206, 2013)
1	AP 108/15	500 ppm	≥ 2000 and ≤ 3000 (soil)	XA1
2	AP $108 / 20$	600 ppm	≥ 2000 and ≤ 3000 (soil)	XA1
3	KL 30	686 ppm	>600 and ≤ 3000 (water)	XA2
4	AP 104/5	0	≥ 2000 and ≤ 3000 (soil)	XA1

Table 4.20: Limiting values for chemical exposure (BS EN 206: 2013)

Chemical characteristic	Exposure Risk Conditions (BS EN 206: 2013)		
	XA1: Slightly aggressive chemical environment	XA2: Moderately aggressive chemical environment	XA3: Highly aggressive chemical environment
Ground Water			
$\begin{gathered} \mathrm{SO}_{4}{ }^{2-}(\mathrm{mg} / \mathrm{l}) \\ * 1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{l} \end{gathered}$	≥ 200 and ≤ 600	>600 and ≤ 3000	>3000 and ≤ 6000
pH	$\begin{gathered} \leq 6.5 \text { and } \geq 5.5 \\ (5.5-6.5) \end{gathered}$	$\begin{gathered} <5.5 \text { and } \geq 4.5 \\ (5.5-4.5) \end{gathered}$	$\begin{gathered} <4.5 \text { and } \geq 4.0 \\ (4.5-4.0) \end{gathered}$
Soil			
$\mathrm{SO}_{4}{ }^{2-}(\mathrm{mg} / \mathrm{kg})$	$\begin{aligned} & \geq 2000 \text { and } \leq 3000^{*} \\ & (\geq 0.2 \% \text { and } \leq 0.3 \%) \end{aligned}$	$\begin{aligned} & >3000^{*} \text { and } \leq 12000 \\ & (>0.3 \% \text { and }-\leq 1.2 \%) \end{aligned}$	$\begin{aligned} & \gg 12000 \text { and } \leq 24000 \\ & (>1.2 \% \text { and } \leq 2.4 \%) \end{aligned}$

NB:

* The $3000 \mathrm{mg} / \mathrm{kg}$ limit is reduced to $2000 \mathrm{mg} / \mathrm{kg}$, where there is sulphate ion accumulation risk in the concrete due to drying and wetting cycles/ capillary suction.
- $1 \mathrm{mg} / \mathrm{kg}=0.0001 \%$ by weight; 1% by weight $=10000 \mathrm{mg} / \mathrm{kg}$
- $1 \mathrm{~g} / \mathrm{L}=1000 \mathrm{ppm}$; and $1 \mathrm{ppm}=0.001 \mathrm{~g} / \mathrm{L}=1 \mathrm{mg} / \mathrm{L}$

Figure 4.1: Average 16-year ratings of concrete in sulphate soils (Stark 2002).

4.4 Concrete cube compressive strength tests

The concrete cube compressive strength test was done in conformity to BS EN 12390-1: 2012 and BS EN 12390-2: 2009, to determine the 7-day and 28-day strengths as a confirmatory quality control test of the 25 MPa design concrete strength using the 42.5N Sulphate Resistant Cement (SRC), as shown in Figure 4.2 and summarised in Table 4.21 below, with more details in Appendix C.1.

The test results showed that all the locations had 7-day test strength values in the 104.2-123.36\% range of the 25 MPa design value, and 28-day test strength values in the range of 155.12-211.08\% of the 25 MPa design value.

The compressive test values above were used to confirm and provide assurance to the foundation's design concrete strength value of 25 MPa using 42.5N Sulphate Resistant Cement as a remedy to the sulphate and chloride attacks, as discussed in section 4.3.6 (BS EN 12390-2, 2009; BS EN 12390-1, 2012).

Figure 4.2: Compressive Concrete cube strength results

Table 4.21: Compressive Concrete cube strength result summaries

Location	Tested Cube strength values (For a 28-day Design Strength of 25 MPa)			
	7-day strength \%esults (MPa)			of the 25Mpa Design Strength
	Results (MPa)	\%-day strength of the 25Mpa Design Strength		
KL 30	27.71	110.84%	40.08	160.32%
AP 108/15	29.81	119.24%	43.31	173.24%
AP 108/20	26.05	104.20%	38.78	155.12%
AP 104/5	30.84	123.36%	52.77	211.08%

4.5 Static Load Tests

The insitu static load tests were done to determine the insitu displacement and load capacity values of the foundations when under tension/uplift, compression, and lateral load test methods in conformity to IEC 61773 (1996) and/or COMESA/FDHS 293 (2007) as summarised in Tables 4.22 to 4.24, with more details found in Appendix D.

The static load test results showed that the location AP 104/5 exhibited maximum displacement values of $0.09 \mathrm{~mm},-0.83 \mathrm{~mm}$ and 2.39 mm under tension, compression and lateral load tests respectively; whereas locations AP 108/15, AP 108/20 and KL 30 exhibited maximum tension displacement values of 0.83 mm , 0.19 mm and 4.74 mm respectively against limiting reference displacement values of 25 mm for both tension and compression load tests, and a 50 mm limiting reference displacement value for the lateral load test (IEC 61773, 1996; COMESA/FDHS 293, 2007).

The above static load test results were used in determining the slope $\left(C_{1}\right)$ of the hyperbolic model graph’s empirical line equation, and calculation of the insitu foundation's load capacity $\left(R_{c}\right)$ using the Chin-Kondner extrapolation (1971) as discussed in section 3.11. The actual insitu load capacities of the test-foundations
under static load methods were 105.29% to 249.14% fraction of the prescriptive design values, which reaffirmed the conclusion that the load capacity results of the insitu-tested full-scale foundations exceeded the prescriptively designed load capacity values, as shown in Table 4.24.

Table 4.22: Insitu static load test summaries

Location	Maximum Displacements (mm)			IEC 61773 (1996) Displacement Limits		
	Tension (T)	Compression (C)	Lateral (L)	T (mm)	C (mm)	L (mm)
AP 104/5	0.09	-0.83	2.39			
AP 108/15	0.83	-	-	25	25	50
AP 108/20	0.19	-	-			
KL 30	4.74	-	-			

Table 4.23: Slope Readings for insitu static load tests

Foundation	Graph Line Slopes (x 10-3		
	Tension Test	Compression Test	Lateral Test
AP 104/5	0.7223	0.5019	5.2591
AP 108/15	0.9996	-	-
AP 108/20	1.3568	-	-
KL 30	0.8755	-	-

Table 4.24: Foundation load capacity summaries for the locations

Location	Load Capacities (kN)					
	Tension Test Insitud		Ulimate Design Load	Insitu load	Ultimate Design Load	Insitu load
	Ultimate Design Load					
AP 104/5	1384.47	555.69	1992.43	1077.08	190.15	180.59
AP 108/15	1000.40	945.36	-	-	-	-
AP 108/20	737.03	594.45	-	-	-	-
KL 30	1142.20	962.30	-	-	-	-

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In the last couple of years, Static load tests for foundations has been applied in several new projects in Uganda, and one such area is the inclined foundation columns/chimneys of the overhead power transmission lines.

The main objective of this study was to conduct a comparative analysis of the foundation's performance with respect to its load-displacement response using the prescriptive design and insitu static load test methods under sustained axial loading conditions in order to validate the obtained allowable and/or ultimate load bearing capacities and the foundation's design assumptions used. This was achieved by studying the constitutive behaviour of the soils and the findings of the static load tests on the composite foundation structure.

Considerations of the aforementioned transmission line specifications limited the 'step-pad’ foundations to only uplift/tension load tests as compared to the pile foundation where all uplift, compression and lateral tests were conducted. These load 'testing-type' limitations were necessary to allow for a factual and manageable project. The knowledge and insight gained and calculation procedures, however, are not limited to the materials and configurations used in the research study.

5.2 Conclusions

The following conclusions were drawn:

5.2.1 Insitu Load Capacities

The insitu load capacities of the test foundations under static load method were 105.29% to 249.14% fraction of the prescriptive load capacities values. Hence, the static load test confirmed that the prescriptive design approaches use equations and methods governing a linear-elastic boundary value problem in the design value extrapolations instead of the more-realistic plastic and non-linear approach.

5.2.2 Maximum displacement values

The maximum displacement values from the static load tests differed considerably from that of the prescriptive design and technical specifications by being about 0.36% to 18.96% fraction of the 25 mm prescriptive limit under uplift and 3.32% fraction of the prescriptive 25 mm under compression and 4.78% fraction of the prescriptive 50 mm limit under lateral test. The static load test displacements were less than 20\% of the prescriptive/theoretical values, thus, reducing displacement overdesigns by 80%. The prescriptive values were 80% higher due to multiple design assumptions and higher factors of safety to minimise human error on site.

5.2.3 Compressive strength of test foundation concrete

Due to the acidic nature of the soils or ground water, and the technical specification's proposal to use 42.5 N Sulphate Resistant Cement (SRC), this created an overdesign in the compressive strength of concrete ranging from 104.2\% to 123.36% of the design compressive strength at 7 days, and a 155.12% to 211.08% at 28 days, due to lack of a low grade 32.5N SRC in Uganda.

5.3 Recommendations

The following recommendations have been made:

5.3.1 Current Research Issues

Although this study has advanced the current state of understanding of the functioning of static load tests, it has been limited in its scope due time and financial constraints, and further research needs to be done in the areas that fall outside the scope of this project. The most important of the areas that need further research is the influence of temperature variations and the rate of backfill soil compaction on the ultimate loading bearing capacity readings.

5.3.2 Company (Sinohydro Corporation, KPTL, and UETCL)

The company needs to create a centralised database where all design data are collected, analysed and recorded for all projects as shown by the need for sitespecific design-data in this research, and liaise with UIPE/ERB.

5.3.3 Kyambogo University

It is hoped that in future, the University could partially or fully fund researches of graduate and undergraduate students; and regularly update the centralised research database so as to mitigate duplication by students.

5.4 Future Research

Future research should be done in quantifying the influence of ambient temperature and/or weather variations, and the rate of insitu backfill-soil compaction on the results of the static loading tests.

REFERENCES

Al-Khafaji, A. and Andersland, O. (1992). Geotechnical Engineering and Soil Testing. $1^{\text {st }}$ Edition, Oxford University Press Inc., Oxford, UK, pp. 392-423.

Al-Taie, E., Al-Ansari, N. and Knutsson, S. (2016). Evaluation of foundation settlement under various added loads in different locations of Iraq using Finite Element. Engineering Journal, Vol.8, No.5, pp 257-268. doi: 10.4236/eng.2016.85022.

An-Bin, H. and Hai-Sui, Y. (2018). Foundation engineering Analysis and Design, $1^{\text {st }}$ Edition, ISBN 13: 978-1-138-72079-4. CRS Press, Florida, USA, pp 189-239.

ANSI/AISC 360-10 (2010). Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois 60601-1802, USA, pp 1-609.

ASTM D1143 / D1143M-07 (2013). Standard Test Methods for Deep Foundations Under Static Axial Compressive Load, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

ASTM D3689 / D3689M-07 (2013). Standard Test Methods for Deep Foundations Under Static Axial Tensile Load, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

ASTM D3966 / D3966M-07 (2013). Standard Test Methods for Deep Foundations Under Lateral Load, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

Atkinson, M. (2004). Structural Foundations Manual for Low-Rise Buildings, 2nd Edition, ISBN 0-203-30199-4. Spon Press, London, UK, pg 34-168.

Barvashov, V., Kharlamov, P., Naidenov, A. and Rytov, S. (2008). "Application of simplified models to qualitative geotechnical analysis" Proceedings of the Sixth International Conference on Case Histories in Geotechnical Engineering and Symposium in Honour of Prof. J. K. Mitchell, Arlington, VA, August 11-16, 2008.

Barends, F. (2011). Introduction to Soft Soil Geotechnique: Content, Context and Application, $1^{\text {st }}$ Ed., ISBN: 978160750788-8. IOS, Amsterdam, Netherlands, pp 189-209.

Basarkar, S., Manish, K. and Vaidya, R. (2011). High Strain Dynamic Pile Testing Practices in India-Favourable Situations and Correlation Studies, Proceedings of Indian Geotechnical Conference, Kochi, India, 1039-1042.

Bayliss, C. and Hardy, B. (2011). Transmission and Distribution Electrical Engineering, $4^{\text {th }}$ Edition, ISBN 978-0-08-096912-1. Elsevier Press, Oxford, UK, pp 615-629.

Bazant, Z. (1979). Methods of Foundation Engineering. Developments in Geotechnical Engineering 24 (Hruban, Konrad \& Sobotka, Zdenek., eds), ISBN: 978-0-444-99789-0, Elsevier Scientific Publishers, Amsterdam, Netherlands, pp 17-492.

Berardi, R. and Lancellotta, R. (1991). Stiffness of granular soil from field performance. Geotechnique, 41(1), 149-157.

Bilge, S., Jeff, B., Bülent, A. and Jay, S. (2011). Design of shallow foundations based on LRFD design method, $7^{\text {th }}$ National Conf. on Earthquake Eng., $30^{\text {th }}$ May $-3^{\text {rd }}$ June 2011, Istanbul, Turkey, pp 1-9.

Bosela, P., Brady, P., Delatte, N. and Parfitt, K. (2012). Failure Case Studies in Civil Eng. Structures, Foundations, and Geo-environment, ${ }^{\text {nd }}$ Ed. ASCE, Virginia, USA, pp 1-32.

Bowles, J. (1997). Foundation analysis and design, $5^{\text {th }}$ Edition, ISBN 13: 9780079122476. The McGraw-Hill, Singapore, pp 1-343.

Bureau of Indian Standards (1992). IS 1200-1: 1992. Method of measurement of building and civil eng. works, Part 1, UDC 69.003.12:69.021.13:624.13, New Delhi, BIS.

Bureau of Indian Standards (1985). IS 5613-2-2: 1985. Installation and maintenance of overhead power lines: Part 2 Lines above 11 kV and up to and including 220 kV, Sec. 2, UDC 621.315.17.027.6/.8: 006.76, New Delhi, BIS.

British Standards Institution (2001). BS EN 50341-3: 2001. Overhead electrical lines exceeding AC 45 kV . Set of Nat. Normative Aspects, ISBN: 978058071918-9, London, BSI. British Standards Institution (1999). BS 5930: 1999 + A2: 2010. Code of practice for site investigations. ISBN: 978-0-580-64609-6, London, BSI.

Byrne, G. and Berry, A. (2008). A Guide to Practical Geotechnical Engineering in Southern Africa, $4^{\text {th }}$ Ed. Franki Africa (Pty) Ltd, Cape Town, South Africa, pp 156-166.

Carter, M. and Bentley, S. (2016). Soil properties and their correlation, $2^{\text {nd }}$ Edition, ISBN: 978-1119130888. John Wiley and Sons Inc., West Sussex, UK, pg 1-217.

Christian, J., Ladd, C. and Baecher, G. (1994). "Reliability applied to slope stability analysis." Journal of Geotechnical Engineering, 120(12), 2180-2207.

Cockerill, P., Nutter, J., Bradshaw, K., Ehrman, T. and Witney, J. (2017). East African Piling Ltd Company Profile, www.eastafricanpiling.com, Kampala, Uganda, pp 1-10.

Coduto, D. (2001). Foundation Design: Principles and Practices. $2^{\text {nd }}$ Edition, ISBN: 0-13-589706-8. Prentice Hall Inc., New Jersey, USA, pp 143-720.

COMESA/FDHS 293 (2007). Overhead lines-testing of foundations for structures, COMESA Harmonised Standard, IEC., Geneva, Switzerland. www.iec.ch.

D'Appolonia, D., D'Appolonia, E. and Brissette, R. (1970). Settlement of spread footings on sand: Closure. JSMFD, ASCE, Vol. 96, No. 2, pp. 754-762.

Das, B. (2007). Theoretical Foundation Engineering. Developments in Geotechnical Eng., Vol. 47, ISBN: 0-444-42860-7. Elsevier Publishers, Amsterdam, Netherlands, pp 1-242.

Das, B. and Sivakugan, N. (2007). Settlements of shallow foundations on granular soil- an overview. Journal of Geotechnical Eng. 1: 19-29, DOI: 10.3328/IJGE.2007.01.01.19-29.

Das, B. (2016). Principles of Foundation Engineering, $8^{\text {th }}$ Edition. ISBN-13: 978-1-305-08155-0. Cengage Learning, Boston, USA, pp 1-911.

Das, B. and Sobhan, K. (2018). Principles of Geotechnical Engineering. 9 ${ }^{\text {th }}$ Edition. Cengage Learning, Boston, USA, pp 710-742.

Das, B. (2019). Advanced soil mechanics. $5^{\text {th }}$ Edition. ISBN-13: 978-0815379133. CRC Press, Taylor \& Francis Group, Florida, USA, pp 1-671.

Delvaux, D., Mulumba, J., Sebagenzi, M., Bondo, S., Kervyn, F. and Havenith, H. (2015). Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model. Journal of African Earth Sciences 134 (2017) 831e855.

Duzceer, R. (2009). "Observed and predicted settlement of shallow foundation." $2^{\text {nd }}$ Intern. Conf. on New Developments in Soil Mechanics and Geotechnical Engineering 590-597.

Emuriat, J. (2017). Parametric study on analysis and design of secant pile for earthquake loading, ISBN: 978-620-2-30082-7. Scholar’s Press, Beau Bassin, Mauritius, pp 1-90.

England, M. and Fleming, W. (1994). Review of foundation testing methods and procedures. Proceedings of the Institution of Civil Engineers - Geotechnical Eng. Advisory Panel, Vol. 107, Issue 3, https://doi.org/10.1680/igeng.1994.26466, pp 135-142.

Federal Highway Administration (1992). Static Testing of Deep Foundations, Publication No. FHWA-SA-91-042. (Kyfor Z. G., Schnore A. R., Carlo T. A., and Baily P. F., eds), Soil Mechanics Bureau, NY State Dep’t of Transportation, New York, USA, pp 1-165.

Fenton, G., Griffiths, D. and Williams, M. (2005). Reliability of traditional retaining wall design. Géotechnique, 55(1), 55-62.

Foye, K., Salgado, R. and Scott, B. (2006a). Assessment of Variable Uncertainties for Reliability-Based Design of Foundation, Journal of Geotechnical and Geoenvironmental Eng. doi: 10.1061/(asce)1090-0241(2006)132:9 (1197-1207).

Foye, K., Salgado, R. and Scott, B. (2006b). Resistance Factors for Use in Shallow Foundation LRFD, Journal of Geotechnical and Geoenvironmental Engineering, 132(9), pp. 1208-1218. doi: 10.1061/(asce)1090-0241(2006)132:9 (1208-1218).

George, M., Sims, I. and Cripps, J. (2006). Clay materials used in construction, ISBN: 9781862391840. The Geological Society, Engineering Geology Special Publication No. 2., Geological Society of London, UK, pp 223-484.

Ghannoum, E. (2017). Structural and Mechanical Designs. International Council on Large Electric Systems Study Committee B2: Overhead Lines (Papailiou, Ed), ISBN 978-3-319-31747-2. Intern. Council on Large Electric Systems (CIGRE), Paris, France, pp 191-276. Gilbert, R. and Tang, W. (1995). "Model uncertainty in offshore geotechnical reliability." Proc. $27^{\text {th }}$ Offshore Technology Conference, Houston, Texas, 557-567.

Handy, R. and Spangler, M. (2007). Geotechnical Engineering Soil and Foundation Principles and Practices, $5^{\text {th }}$ Edition. Mc.GrawHill, New York USA, pp 668-711.

Hansen, B. (1970). Revised and extended formula for bearing capacity, Bulletin no. 28. Danish Geotechnical Institute, Copenhagen, Denmark, pp 5-11.

Hertlein, B. and Davis, A. (2006). Non-Destructive testing of Deep Foundations. ISBN-13 978-0-470-84850-0 (HB), John Wiley \& Sons Ltd, West Sussex, England, pp 19-100.

Honjo, Y., Suzuki, M. and Matsuo, M. (2000). Reliability analysis of shallow foundations in reference to design codes development, Computers and Geotechnics, Volume 26, Issues 3-4, Pages 331-346, ISSN 0266-352X, https://doi.org/10.1016/S0266-352X(99)00045-2.

IEC 61773 (1996). Overhead lines -Testing of foundations for structures. International Electrotechnical Commission. Geneva, Switzerland. www.iec.ch.

IEEE-691 (2001). IEEE Guide for Transmission Structure Foundation Design and Testing. ISBN: 0-7381-1808-7, Institute of Electrical and Electronics Eng., NY, USA, pp 1-176.

Jang, H., Kim, K., Ham, W. and Chung, S. (2007). A study on the transmission tower foundation design and construction method-a focus of cylindrical foundation, J. Korean Inst. Electrical Eng., 56 (6) (2007), pp. 1031-1034.

Juang, C., Yang, S., Yuan, H. and Khor, E. (2004). Characterization of the uncertainty of the Robertson and Wride model for liquefaction potential evaluation. Soil Dynamics and Earthquake Engineering, 24(9), 771-780.

Juang, C., Fang, S., Tang, W., Khor, E., Kung, G. and Zhang, J. (2009). Evaluating model uncertainty of an SPT-based simplified method for reliability analysis for probability of liquefaction. Soils and Foundations, 49 (12), 135-152.

Juang, C., Lei, W., Sez, A. and Zhe, L. (2012). Reliability-based robust and optimal design of shallow foundations in cohesionless soil in the face of uncertainty. Journal of GeoEngineering, Vol. 7, No. 3, pp. 075-087, Dec. 2012; doi: 10.6310/jog.2012.7 (3).1.

Kandaris, P. and Davidow, S. (2018). Standardising Foundation Design for Electric Transmission Structures. The Magazine of the Deep Foundations Institute, July/August 2018, (Marinucci, Manuel \& Paltsios, eds), DFI, New Jersey, USA, pp 73-77.

Kaushik, C., Bhavikatti, S. and Anubha, K. (2010). Basic Civil and Environmental Engineering. ISBN 13: 978-81-224-2850-6. New Age Int., New Delhi, India, pp 22-31.

Khodaparast, M., Rajabi, M. and Mohammadi, M. (2015). The new empirical formula based on dynamic probing test results in fine cohesive soils. IJCE-Geotechnique, Vol. 13, No. 2, Transaction B: Geotechnical Eng., June. DOI: 10.22068/JJCE. 13.2.105, pp 1-9.

Kim, B. and Cho, B. (1995). The design and the full load test results of 765 kV tower foundation. Proceedings of Korean Inst. of Electrical Eng., National Conf., pp. 447-449.

Lacasse, S. and Nadim, F. (1994). Reliability issues and future challenges in geotechnical engineering for offshore structures. Proc., $7^{\text {th }}$ Int. Conf. on Behaviour of Offshore Structures, Cambridge, Massachusetts, pp. 9-38.

Liao, S. and Whitman, R. (1986). Overburden correction factors for SPT in sand. ASCE Journal of Geotechnical Eng., Vol. 112-Issue 3, https://doi.org/10.1061/(ASCE)07339410(1986)112:3(373), pp. 373-377.

Long, M. (2007). Comparing Dynamic and Static Test Results of Bored Piles, Proceedings of the Institution of Civil Engineers Geotechnical Engineering 160, Issue GE1, 43-49.

MacDonald, R. (1966). Manuscript map for the geology of Uganda. Unpubl. Rept. Dept. Land Surveys, Entebbe, Uganda.

Manjriker, G. (2014). Foundation Engineering Handbook, 2 ${ }^{\text {nd }}$ Edition. ISBN-13: 978-14398-92787. CRC Press, Florida, USA, pp 105-379.

Martin, G. and Lew, M. (1999). "Recommended Procedures for Implementation of DMG Special Publication 117 Guidelines for Analyzing and Mitigating Liquefaction Hazards in California." Southern California Earthquake Centre, Univ. of Southern California, CA.

Mathieson, W., Mitchell C., Robertson, C. and Rustvold, J. (2004). Micropiles to Support Electric Power Transmission Towers. Proceedings of the $29^{\text {th }}$ Annual Conference on Deep Foundations, 2004, Vancouver, British Columbia, Canada, pp. 123-136.

McCormac, J. and Csernak, S. (2012). Structural Steel Design, $5^{\text {th }}$ Edition. ISBN-13: 978-0-273-75135-9. Pearson Education Ltd Publishers, Boston: Prentice Hall, pp 63-211.

Michael, A., Peter, C., Rachel, J. and Shrinivas, B. (2005). Guide specification for highperformance concrete for bridges, ISBN 0893122459, PCA, Illinois, USA, pp 1-51.

Middendorp, P., Bermingham, P. and Kuiper, B. (1992). Statnamic load testing of foundation piles. $4^{\text {th }}$ Intern. Conf. on the Application of Stress-wave Theory to Piles, The Hague, 21-24 September 1992, Netherlands, pp. 265-588.

Ming, X. and Barreto, D. (2015). Geotechnical Engineering Design, $1^{\text {st }}$ Edition. ISBN: 978-0-470-63223-9, John Wiley \& Sons. Inc., West Sussex, UK, pp. 576-211.

Ministry of Energy and Mineral Development (2013). MoE \& MD: 2013- Technical Specifications for Karuma Hydropower Project and associated Transmission Lines- Part A: Technical Specifications for Transmission Works, Kampala, Uganda, pp. 1-260.

Monnet, J. (2015). In Situ Tests in Geotechnical Engineering.1 ${ }^{\text {st }}$ Edition, ISBN: 978-1-848-21849-9. ISTE Ltd, London, UK, pp 73-104.

Mosley, B., Bungey, J. and Hulse, R. (2007). Reinforced Concrete Design to Eurocode 2, $6^{\text {th }}$ Edition. ISBN-13: 978-0-230-50071-6, Palgrave Macmillan Press, Hampshire RG21 6XS, 175 Fifth Avenue, NY 10010, USA, pp 15-308.

Murad, A., Alshibli, K. and Anand, P. (2017). Advances in Analysis and Design of Deep Foundations. Proceedings of the $1^{\text {st }}$ GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures, ISBN 978-3-319-61641-4, pp 1-300.

Murthy, V. (2007). Advanced Foundation Engineering, 1 ${ }^{\text {st }}$ Edition, ISBN: 978-8123915067. CBS Publisher and Distributors, New Delhi, India, pp 251-316.

Muwanga, A., Schumann, A. and Biryabarema, M. (2001). Landslides in Ugandadocumentation of a natural hazard. In (eds.): Muwanga, A., Kohring, R., Schlüter, T., Hollnack, D., Schumann, A.: Proceedings of the Workshop on, Challenges and Perspectives of Interdisciplinary Geo-Networks in East-Africa, Kampala, Uganda, October 1999. Documenta Naturae, 136, 111-115.

Najjar, S. and Gilbert, R. (2009). Importance of lower-bound capacities in the design of deep foundations. Journal of Geotechnical and Geoenvironmental Eng., 135 (7), 890-900.

Newmark, N. and Hall, W. (1969). "Seismic Design Criteria for Nuclear Reactor Facilities," Pro. of 4 ${ }^{\text {th }}$ World Conf. on Earthquake Eng., Vol. 4, Santiago, Chile, pp 37-50. Nilsson, T. (2012). Parameter approach from DPL test. www.nilsson.com.br

Phoon, K. and Kulhawy, F. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36 (4), 612-624.

Phoon, K., Kulhawy, F. and Grigoriu, M. (2003a). Development of a reliability-based design framework for transmission line structure foundations. Journal of Geotechnical and Geoenvironmental Engineering, 129 (9), 798-806.

Phoon, K., Kulhawy, F. and Grigoriu, M. (2003b). Multiple resistance factor design for shallow transmission line structure foundations. JGGE, 129 (9), 807-818.

Poulos, H. and Davis, E. (1980). Pile Foundations Analysis and Design, ISBN 13: 9780471020844, John Wiley and Sons, New York, U.S.A, pp 1-370.

Przewłócki, J., Dardzińska, I. and Świniański, J. (2005). Review of historical buildings’ foundations, Géotechnique, 55 (5), pp. 363 - 372. doi: 10.1680/geot.55.5.363.66017.

Rasin, D. and Kasktas, A. (2009). Observed and predicted settlement of shallow foundation. $2^{\text {nd }}$ International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 May 2009, Nicosia, North Cyprus.

Rausche, F., Goble, G. and Likins, G. (1985). Dynamic determination of pile capacity, Journal of Geotechnical Engineering, ASCE, 111 (3), 367-383.

Rausche, F., Hussein, M. and Likins, G. (2012). The Role of Full-Scale Testing in ASD and LRFD Driven Pile Designs, in. doi: 10.1061/9780784412084.0043.

Reese, L., Isenhower, W. and Wang, S. (2006). Analysis and Design of Shallow and Deep Foundations. John Wiley and Sons, New Jersey, USA, pp 158-269.

Reza, A. and Abdolhosain, H. (2013). A non-linear method to estimate elastic settlement of shallow foundations using small-strain stiffness. International Conf. on Case Histories in Geotechnical Eng. Paper 2, http://scholarsmine.mst.edu/icchge/7icchge/session01/2

Roberge, P. (2000). Handbook of Corrosion Engineering, $1^{\text {st }}$ Edition, ISBN: 9780070765160. Mc. Graw-Hill, New York, USA, pp 1-1101.

Rodrigo, S., Dipanjan, B. and Gavin, K. (2008). Analysis, Design, Testing and Performance of Foundations, Aug $11^{\text {th }}-16^{\text {th }} 2008$, Sixth International Conference on Case Histories in Geotechnical Engineering, pp. 1-23.

Roy, S. and Dass, G. (2014). Statistical models for the prediction of shear strength parameters at Sirsa, India. Doi: 10.6088/ijcser.201404040002, IJCSE, 4 (4), pg 483-498.

Salgado, R. (2006). The Engineering of Foundations, 1 ${ }^{\text {st }}$ Edition. ISBN-13: 9780072500585, McGraw-Hill, Pennsylvania State University, USA, pp 21-896.

Salgado, R., Prezzi, M. and Seo, H. (2007). Advanced modelling tools for the analysis of axially loaded piles. Proc. of the International Workshop on Recent Advances of Deep Foundations (Kikuchi Y., Ed.), P\&A Research Institute, Yokosuka, Japan, pp 49-67.

Sanglerat, G. (1972). The Penetrometer and soil exploration: Interpretation of penetration diagrams-theory and practice. Developments in geotechnical Engineering, Vol. 1. ISBN: 0-444-40976-9, Elsevier Publishing Company, Amsterdam, The Netherlands, pg 1-430.

Sargand, S., Hazen, G. and Masada, T. (1997). Field and laboratory evaluations of spread footings for highway bridges, FHWA Report no: OH/98-017.

Schaetzl, R. and Anderson, S. (2005). Soils: Genesis and Geomorphology, $1^{\text {st }}$ Edition, ISBN: 978-0-511-11104-4. Cambridge University Press, Cambridge, UK, pp 4-652.

Schuster, M., Juang, C., Roth, M. and Rosowsky, D. (2008). Reliability analysis of building serviceability problems caused by excavation. Géotechnique, 58 (9), 743-749.

Seeley, I. and Winfield, R. (2015). Groundwork and Foundations-Building Quantities Explained, $5^{\text {th }}$ Edition -Fully compatible with SMM7 1998 Revision, ISBN 978-0-333-69333-9, Macmillan, Hampshire, UK, pp. 51-75. doi: 10.1007/978-1-349-14653-6-4.

Shahin, M., Maier, H. and Jaksa, M. (2002). Prediction settlement of shallow foundations using neural network. JGGE, ASCE, Vol 128 No: 9: 785-793.

Sivakugan, N. and Johnson, K. (2004). Settlement prediction in granular soils: a probabilistic approach. Geotechnique, 54 (7), 499-502.

Sivakugan, N. and Braja, D. (2011). Geotechnical Engineering- A Practical ProblemSolving Approach, ISBN-13: 978-1-60427-016-7. J. Ross, Florida, USA, pp 289-483.

Smith, I. (2014). Smith's Element of Soil Mechanics, $9^{\text {th }}$ Edition, ISBN: 9780470673393. John Wiley and Son Ltd, West Sussex, UK, pp. 1-459.

Sriram, K. and Prasad, Y. (2017). Design of Electrical Transmission Lines: Structures and foundations, Vol. 1, ISBN: 978-1-315-75568-7. CRC Press, London, UK, pp. 1-417.

Stark, D. (2002). Performance of Concrete in Sulfate Environments, R\&D Serial No. 2248, Portland Cement Association, Skokie, Illinois, USA, 2002.

Staveren, M. (2006). Uncertainty and ground conditions-a risk management approach. $1^{\text {st }}$ Edition, ISBN-13: 978-0-75-066958-0. Butterworth-Heinemann, Oxford, UK, pp. 3-290. Sun, J., Zhao, Z. and Cheng Y. (2013). Bearing capacity analysis using the method of characteristics, Acta Mechanica Sinica (2013) 29 (2): 179-188, Doi: 10.1007/s10409-013-0018-1. CST \& AM and Springler-Verlag Berlin Heidelberg, 2013, pp 1-11.

Surendra, R. and Sanjeev, K. (2017). Role of Geotechnical Properties of Soil on Civil Engineering Structures, Resources and Environment, Vol. 7, No. 4, 2017, e-ISSN: 21632634, pp. 103-109. doi: 10.5923/j.re.20170704.0

Tavares, R. (2009). An analysis of the fire safety codes in Brazil: Is the performance-based approach the best practice? Fire Safety Journal 44, Grupo de Estudos sobre Dinâmica de Pedestres, Elsevier, London, UK, pp 749-755. 10.1016/j.firesaf.2009.03.005

Terzaghi, K. (1943). Theoretical Soil Mechanics. ISBN: 9780471853053. John Wiley, New York, USA, pp 1-490.

Terzaghi, K. and Peck, R. (1967). Soil Mechanics in engineering practice, ${ }^{\text {nd }}$ Edition, John Wiley, New York, USA.

Terzaghi, K., Peck, R. and Gholamreza, M. (1996). Soil Mechanics in Engineering Practice, $3^{\text {rd }}$ Edition. John Wiley, New York, USA, pp. 386-499.

Thounaojam, S. and Sultana, P. (2015). Prediction of Bearing Capacity of Bored CastInsitu Pile, IOSR Journal of Mechanical \& Civil Eng., e-ISSN: 2278-1684, pp 01-06.

Tipter, A. (2018). Risks in Ground Engineering. The Magazine of the Deep Foundations Institute, May/June, (Marinucci A., Ed), DFI, New Jersey, USA, pp 111-113.

Tomlinson, M. and Boorman, R. (2001). Foundation Design and Construction, $7^{\text {th }}$ Edition, ISBN: 0130-31180-4. Pearson Education, Essex, UK, pp. 1-547.

Tomlinson, M. and Woodward, J. (2015). Pile Design and Construction Practice, 6 ${ }^{\text {th }}$ Edition, ISBN-13: 978-1-4665-9264-3. CRC Press, Florida, USA, pp. 1-569.

Tuncer, E. and Lohnes, R. (1977). An engineering classification for certain basalt-derived lateritic soils, Eng. Geology, Vol. 11, Issue 4, pp 319-339.

US 319 (2003). Seismic code of practice for structural designs, $1^{\text {st }}$ Edition. ICS 91.080.01, Uganda National Bureau of Standards, Kampala, Uganda, www.unbs.or.ug.

Venkatesh, K., Samadhiya, N. and Pandey, A. (2008). Approaches of analysis of ogee shaped barrage raft floor on varying foundation media. Proceedings of the $6^{\text {th }}$ Int. Conf. on Case Histories in Geotechnical Eng. and Symposium, Arlington, VA, August 11-16.

Wang, Y. (2011). Reliability-based design of spread foundations by Monte Carlo Simulations. Géotechnique, 61(8), 677-685.

Waugh, D. (2000). Geography-an integrated approach, $3^{\text {rd }}$ Edition, ISBN: 0-17-444706X. Nelson Thornes, Cheltenham, UK, pp. 8-648.

White, D. and Deeks, A. (2007). Recent Research into the behaviour of Jacked Foundation Piles. Proceedings of the Int. Workshop on Recent Advances of Deep Foundations (Kikuchi Y., Otani J., Kimura M. \& Morikawa Y., eds), Yokosuka, Japan, pp 3-25.

Whitman, R. (2000). Organizing and evaluating uncertainty in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126 (7), 583-593.

Wu, T., Tang, W., Sangrey, D. and Baecher, G. (1989). Reliability of offshore foundations-state-of-the-art. Journal of Geotechnical Engineering, 115 (2), 157-178.

Zhang, J., Zhang, L. and Tang, W. (2009). Bayesian framework for characterizing geotechnical model uncertainty. JGGE, 135 (7), 932-940.

Zhang, J., Zhang, L. and Tang, W. (2011). Reliability-based optimization of geotechnical systems. Journal of Geotechnical and Geoenvironmental Eng., 137 (12), 1211-1221.

[^0]

Figure A.1-1: 400kV Karuma-Kawanda Transmission Line Route (KIP, 2019)

Figure A.1-2: Location Map for KL 30 (Getlab, 2019)

Appendix A. 2 - Geology Map of Uganda

Figure A.2-1: The Late Quaternary Landscape of Uganda (DHI and COWI, 2011)

Figure A.2-2: The Geological Map of Albertine Graben (Geology and Mines, 1998)

Figure A.2-3: Geology Map of Uganda (Macdonald, 1966 \& Muwanga et al., 2001)

Appendix A. 3 - The Seismic Map of Uganda

Figure A.3-1: The Seismic Map of Uganda (Geology and Mines, 2002)

Figure A.3-2: Seismic Map of Uganda (MoWT, 2010; US 319, 2003)

Appendix A. 4 - The Demarcated Rainfall Zones of Uganda

Figure A.4-1: Demarcated Rainfall Zones of Uganda (MoWT, 2010)

Appendix B. 1 - Soil Profiles

SOIL PROFILE REPORT

PROJECT: Geotechnical Investigation on Karuma-Lira T/Line
CLIENT: Samuel Acidri

GEOTECHNICAL DESIGN PARAMETERS

$\begin{array}{cc}\text { BOREHOLE } & \text { SOIL } \\ \text { LEGEND DESCRIPTION }\end{array}$

$\underset{\text { 〕. }}{\text { 〕. }}$

$\begin{array}{r} \text { PROJECT NUMBER: } \\ \text { BH REF: } \\ \text { OFFSET: } \\ \text { DISTRICT: } \\ \text { WATER TABLE (m): } \end{array}$	$\begin{aligned} & \text { P2017014 } \\ & \text { G/BH/17/0456 } \\ & 0.2 \mathrm{~m} \\ & \text { Oyam } \\ & 1.14 \mathrm{~m} \end{aligned}$	DRILLED D TEST METH
BOREHOLE SOIL		

NMC-Natural Moisture Content, PI-Plasticity Index, LL-Liquid Limit, $\mathbf{S O}_{4}{ }^{2-}$-Sulphates, Cl -Chlorides, $\mathbf{B H}$-Borehole, SPT-Standard Penetration Test, $\mathbf{G}_{\mathbf{s}}$-Specific Gravity, \mathbf{N}-measured SPT value, $\mathbf{N}_{\text {corr }}$-Corrected SPT value, NP-Non Plastic p-Bulk Density

Table B.1-2: Boring Log summary for AP 108/15

LEGEND:

Table B.1-3: Boring Log summary for AP 104/5

BOREHOLE LOG	Location No: AP 104/5		Geotechnical Lab:	GEOTECH SOLUTIONS
Commencement Date:	9/4/2019	Easting Coordinate:	400765.294	
Completion Date:	9/4/2019	Northing Coordinate:	212510.472	
Drilling Equipment:	GY-50 / Dando Terrier	Logged by:	J.R. Odeke/Jerom	
Drill Superintendent:	Eric M	Drilling Method:	Rotary Method	
Final Hole Depth (m):	20.0	Core Diameter (mm) :	120	
Hole Inclination:	90	Client:	Samuel Acidri	

			General Description						8			e		SPT	

			General Description						$\begin{aligned} & \text { og } \\ & \text { O} \\ & \end{aligned}$					SPT	$\frac{n}{n}$

			General Description						$\begin{aligned} & \text { og } \\ & \text { a } \end{aligned}$			e_{0}^{e}		SPT	$\frac{2}{4}$

Ground water table was encountered at 0.3 m

Appendix B. 2 - Borehole Core Logs and Photos

Table B.2-1: Investigation Borehole Core Photos for KL 30 (B103+5)

Sample boxes for KL $30(B 103+5)$ from $\mathbf{0 . 0 0 - 1 0 . 0 0} \mathbf{~ m}$

Standard penetration test samples for KL 30 (B103+5)

Table B.2-2: Investigation Borehole Core Photos for AP 108/15

Table B.2-3: Boring Log summary for AP 108/20

Geotechnical Investigations Boring Log	Geotechnical Soil Laboratory:	GEOTECH SOLUTIONS	Location Coordinates	
	Profiled by: R. Sembera	Trial Pit No: AP108/20	Easting	Northing
	Date: N/A		391873.5	192810.1
		0.0-0.1m	Gray stiff silty soil	
Pit profile			Brownish-orange laterite, with duricrust. Hard to excavate.	
		3.0 m	Ground water table not encountered	
Excavation Method: Manual	GEOTECH SOLUTIONS Geotech Solutions (U) Ltd Location area terrain: Flat to gently sloping P.O. Box 4849 Kampala Plot 42, Buikwe Road, Njeru Town			
Water Table: Not encountered				

Table B.2-4: Investigation Borehole Core Photos for AP 104/5

Depth: 0.0m-5.0m

Depth: 5.0m-10.0m

Appendix B. 3 - DPL Results

Table B.3-1: Dynamic Probing Light Test (DPL) Summary for AP 108/20

Client: Samuel Acidri		Dynamic Probing Light		GEOTECH SOLUTIONS
Project Area	Easting	Northing	Location	Date
Kawanda-Karuma TL	391873.474	192810.148	AP 108/20	N/A
Cone area $=0.001 \mathrm{~m}^{2}$		Hammer $=10 \mathrm{~kg}$	Fall $=500 \mathrm{~mm}$	
Depth	Blows per 10 cm Penetration	Penetration Rate	Unit Point Resistance	Dynamic Point Resistance
(m)	N_{10}	e (m per blow)	r_{d} (MPa)	q_{d} (MPa)
0				
0.1	5	0.020	2.45	1.4
0.2	9	0.011	4.41	2.5
0.3	14	0.007	6.86	3.8
0.4	15	0.007	7.35	4.1
0.5	16	0.006	7.84	4.4
0.6	14	0.007	6.86	3.8
0.7	14	0.007	6.86	3.8
0.8	14	0.007	6.86	3.8
0.9	12	0.008	5.88	3.3
1	10	0.010	4.9	2.7
1.1	11	0.009	5.39	2.7
1.2	10	0.010	4.9	2.5
1.3	10	0.010	4.9	2.5
1.4	16	0.006	7.84	3.9
1.5	15	0.007	7.35	3.7
1.6	14	0.007	6.86	3.4
1.7	41	0.002	20.09	10.0
1.8	65	0.002	31.85	15.9
1.9	61	0.002	29.89	14.9
2	54	0.002	26.46	13.2
2.1	41	0.002	20.09	9.1
2.2	38	0.003	18.62	8.5
2.3	44	0.002	21.56	9.8
2.4	25	0.004	12.25	5.6
2.5	18	0.006	8.82	4.0
2.6	14	0.007	6.86	3.1
2.7	18	0.006	8.82	4.0
2.8	15	0.007	7.35	3.3

2.9	14	0.007	6.86	3.1
3	13	0.008	6.37	2.9
3.1	11	0.009	5.39	2.2
3.2	12	0.008	5.88	2.5
3.3	13	0.008	6.37	2.7
3.4	15	0.007	7.35	3.1
3.5	14	0.007	6.86	2.9
3.6	12	0.008	5.88	2.5
Geologist: R. Sembera				

Dynamic Penetrometer Light (DPL) Test [EN-ISO-22476-2:2002]

Table B.4-1: Bearing capacity from SPT values for KL 30 (B103+5)

ALLOWABLE BEARING CAPACITY FROM SPT RESULTS FOR KL 30 (B103+5)																		
	SPT Depth (m)										$\text { әп[е } \Lambda \text {-N LdS рәэәлиоך }$	$\underset{\text { COUR RELABLE ENGINERRNG LABORATORY }}{\text { E }}$						
												Allowable Bearing Capacity, $\mathbf{q}_{\text {all }}(\mathbf{k P a})$						
												Foundation Width, B (m)						
					C_{N}	η_{1}	η_{2}	η_{3}	η_{4}	$\mathrm{C}_{\text {ER }}$	N_{55}	1	2	3	4	5	6	7
	1.50-1.95	6, 7, 3	10	Firm	1.00	0.91	0.75	1.00	1.00	0.68	7	186	144	123	114	108	104	102
	3.00-3.45	3, 3, 3	6	Loose	1.38	0.91	0.75	1.00	1.00	0.94	6	160	132	121	108	101	96	93
	4.50-4.95	Refusal	100	Hard	1.00	0.91	0.85	1.00	1.00	0.77	77	2048	1693	1549	1479	1403	1324	1269
	6.00-6.45	5, 6, 6	12	Stiff	1.00	0.91	0.95	1.00	1.00	0.86	10	266	220	201	192	187	183	174
	7.50-7.95	4, 6, 12	18	Stiff	1.00	0.91	0.95	1.00	1.00	0.86	16	426	352	322	307	299	293	289
	9.00-9.45	5, 7, 9	16	Stiff	1.00	0.91	0.95	1.00	1.00	0.86	14	372	308	282	269	262	257	253

Table B.4-2: Bearing capacity from SPT corrected values for AP 108/15
BEARING CAPACITY RESULTS FROM SPT VALUES FOR AP 108/15

Borehole No	Depth (m)	$\begin{gathered} \text { Field } \\ \text { SPT } \\ \mathrm{N} \text {-values } \end{gathered}$	Rod Length correction $\left(\boldsymbol{\eta}_{2}\right)$	Overburden Correction $\left(\mathrm{C}_{\mathrm{N}}\right)$	N_{55}	Soil Description	Consistency	$\begin{gathered} \mathbf{q}_{\text {ult }} \\ (\mathbf{k P a}) \end{gathered}$	$\begin{gathered} \mathbf{q}_{\text {all }} \\ (\mathbf{k P a}) \end{gathered}$
$\begin{gathered} \text { AP } \\ 108 / 15 \end{gathered}$	0-1.00	31.0	0.75	2.28	43	Clayey SAND	Dense	1457.1	485.7
	1.00-2.45	44.0	0.75	1.45	39	Clayey SAND	Dense	1321.3	440.4
	2.45-4.20	24.0	0.85	1.11	19	Silty SAND	Medium Dense	623.8	207.9
	4.20-5.65	No SPT due to presence of boulders							

Table B.4-3: Bearing Capacity Evaluation based on corrected field SPT N-values for AP 104/5

11.40	38	1.00	18.50	8.69	100.21	0.98	30	Clayey SAND	Medium Dense	798.0	659.6
12.70	27	1.00	18.50	8.69	111.51	0.93	20	Clayey SAND	Medium Dense	532.0	439.7
14.00	28	1.00	18.50	8.69	122.80	0.88	20	Clayey SAND	Medium Dense	532.0	439.7
15.30	37	1.00	18.50	8.69	134.10	0.85	26	Clayey SAND	Medium Dense	691.6	571.7
16.60	35	1.00	18.50	8.69	145.40	0.81	23	Silty SAND	Medium Dense	611.8	505.7
17.90	39	1.00	18.50	8.69	156.69	0.78	25	Silty SAND	Medium Dense	665.0	549.7
19.20	43	1.00	18.50	8.69	167.99	0.76	27	Silty SAND	Medium Dense	718.2	593.6

Remarks:

1) $\mathrm{N}^{\prime}{ }_{55}=\mathrm{C}_{\mathrm{N}} \times \mathrm{NX} \eta_{1} \times \eta_{2} \times \eta_{3} \times \eta_{4}$
2) Allowable Bearing Pressure, $q_{a}=\left(N / F_{1}\right) K_{d}$ where $B<F_{4} ; q_{a}=N / F_{2}\left(\left(B+F_{3}\right) / B\right)^{2} K_{d}$ where $B>F_{4} ; K_{d}=1+\frac{0.33 D}{B} \leq 1.33 ; F_{1}=0.05$; $F_{2}=0.08 ; F_{3}=0.3$ and $F_{4}=1.2$
3) For SPT indicated as R , a value of $\mathrm{N}=100$ was assumed.
4) These results relate to the points that were tested.

GEOTECH SOLUTIONS (U) LTD

Technical Manager

Appendix B. 5 - Soil Resistivity Test Results

Table B.5-1: Soil Resistivity Measurement Summary for KL 30 (B103+5)
SOIL RESISTIVITY SURVEY RESULTS FOR KL 30 (B103+5) -(IEEE Std 80-2000/BS 1377: Part 9:1990/BS 5930: 1990)

Tower	Average Temperature	$\mathrm{a}=0.30 \mathrm{~m}$		$\mathrm{a}=1.00 \mathrm{~m}$		$\mathrm{a}=2.00 \mathrm{~m}$		$\mathrm{a}=3.00 \mathrm{~m}$		$\mathrm{a}=4.00 \mathrm{~m}$		$\mathrm{a}=5.00 \mathrm{~m}$	
No	${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathbf{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} p a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} \mathrm{Pa} \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$
$\begin{gathered} \text { KL 30 } \\ (\mathrm{B} 103+5) \end{gathered}$	39	123.3	232	45.2	284	15.4	193	11.2	211	9.5	238	5.2	165

Table B.5-2: Soil Resistivity Survey Results for AP 108/15

SOIL RESISTIVITY SURVEY RESULTS FOR AP 108/15												
Tower No	$\begin{array}{cc} \mathbf{a} \\ (\mathrm{m}) & 0.3 \\ \hline \end{array}$		\mathbf{a} (\mathbf{m}) \mathbf{R} $\mathbf{(\Omega)}$	$\begin{gathered} 1.0 \\ \hdashline \begin{array}{c} P a \\ (\Omega \mathrm{~m}) \end{array} \end{gathered}$	$\begin{array}{cc} \mathrm{a} \\ \text { (m) } \end{array} \quad 2.0$		$\begin{array}{cc} \begin{array}{c} \text { a } \\ \text { (m) } \end{array} & \mathbf{3 . 0} \\ \hline \end{array}$		$\begin{array}{cc} \begin{array}{c} \mathrm{a} \\ \text { (m) } \end{array} & \mathbf{4 . 0} \\ \hline \end{array}$		$\begin{array}{cc} \hline \mathbf{a} & \mathbf{5 . 0} \\ (\mathrm{m}) & \end{array}$	
	$\begin{gathered} \mathbf{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} p a \\ (\Omega \mathrm{~m}) \end{gathered}$			$\begin{gathered} \mathbf{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\Omega) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$
AP108/15	0.27	0.51	1.30	8.17	0.61	7.65	2.30	43.35	0.25	6.29	3.60	113.10

Table B.5-3: Soil Resistivity Survey Results for AP 108/20

SOIL RESISTIVITY SURVEY RESULTS FOR AP 108/20												
Tower No	$\begin{array}{cc}\text { a } \\ \text { (m) } & 0.3\end{array}$		a(m)		$\begin{array}{cc} \hline \mathbf{a} & \mathbf{2 . 0} \\ (\mathrm{m}) & \\ \hline \end{array}$		$\begin{array}{cc} \hline \mathrm{a} \\ \text { (m) } & \mathbf{3 . 0} \\ \hline \end{array}$		a(m)		$\begin{array}{cc} \hline \mathbf{a} & 5.0 \\ (\mathrm{~m}) & \\ \hline \end{array}$	
	$\mathbf{(\Omega)}$	$\begin{gathered} p a \\ (\Omega \mathbf{m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} \mathrm{Pa} \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ (\mathbf{\Omega}) \end{gathered}$	$\begin{gathered} \mathrm{Pa} \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\Omega) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\boldsymbol{\Omega}) \end{gathered}$	$\begin{gathered} P a \\ (\Omega \mathrm{~m}) \end{gathered}$
AP 108/20	598.4	1127.96	276.3	1736.04	131.5	1652.48	70.8	1334.55	35.4	889.70	14.9	468.10

Where: $\mathrm{a}=$ Electrode spacing $(\mathrm{m}) ; \mathrm{R}=$ measured resistance (Ω); and $\mathrm{pa}=\operatorname{apparent}$ resistivity $(\Omega \mathrm{m})$.

Table B.5-4: Soil Resistivity Survey Result for AP 104/5

SOIL RESISTIVITY SURVEY RESULTS FOR AP 104/5											$\begin{gathered} \text { GEOTECH } \\ \text { SOLUTIONS } \end{gathered}$
Eas	ng:	400765.294		Foundaion Location:		AP 104/5		Northing:		212510.472	
$\mathrm{a}=$ Electrode spacing (m)	0.3	$\mathrm{a}=$ Electrode spacing (m)	1.0	$\mathrm{a}=$ Electrode spacing (m)	2.0	$\mathrm{a}=$ Electrode spacing (m)	3.0	$\mathrm{a}=$ Electrode spacing (m)	4.0	$\mathrm{a}=$ Electrode spacing (m)	5.0
$\mathrm{R}=$ measured resistance (Ω)	$p a=$ apparent resistivity ($\Omega \mathrm{m}$)	R = measured resistance (Ω)	$p a=$ apparent resistivity ($\Omega \mathrm{m}$)	$\mathrm{R}=$ measured resistance (Ω)	$p a=$ apparent resistivity ($\Omega \mathrm{m}$)	$\mathrm{R}=$ measured resistance (Ω)	$p a=$ apparent resistivity ($\Omega \mathrm{m}$)	$\mathrm{R}=$ measured resistanc e (Ω)	$p a=$ apparent resistivity ($\Omega \mathrm{m}$)	$\mathrm{R}=$ measured resistance (Ω)	$p a=$ apparent resistivity ($\Omega \mathrm{m}$)
1.50	2.83	6.60	41.47	62.40	784.14	42.50	801.11	2.70	67.86	0.44	13.74

Appendix B. 6 - Soil Classification Tests

Table B.6-1: Soil Classification Summary for KL 30 (B103+5)
SOIL CLASSIFICATION SUMMARY FOR KL 30 (B103+5)
GETAB

	Depth (m)	Particle Size Distribution																Atterberg limits					Soil Chemical Tests				Bulk Density
		$\stackrel{\ominus}{0}$	$\stackrel{\ominus}{\text { in }}$	$\frac{1 n}{i n}$	$\underset{\sim}{\infty}$	તેં	$\stackrel{\ominus}{\dot{I}}$	$\stackrel{\theta}{0}$	กิ	$\stackrel{\ominus}{i}$	$\stackrel{\text { io }}{ }$	$\stackrel{\infty}{\underset{\sim}{]}}$	$\begin{aligned} & 8.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { In } \\ & \underset{\sim}{1} \end{aligned}$	$\stackrel{\underset{\sim}{e}}{\stackrel{\rightharpoonup}{6}}$	$\stackrel{8}{6}$	in	NMC	LL	PL	PI		Cl^{-}	$\mathrm{SO}_{4}{ }^{2-}$	pH		
		(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)		(\%)	(\%)		(\boldsymbol{G}_{s})	$\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$\begin{aligned} & n \\ & \stackrel{n}{6} \\ & \underset{\sim}{0} \\ & 0 \\ & \underset{\sim}{v} \end{aligned}$	0.00-0.40	100	100	100	100	100	100	100	100	100	99.5	99.1	98.5	96.3	91.3	85.3	76.4	24.8	38.5	23.3	15.2	CI	0.014	0.954	5.22	2.462	1.681
	0.40-1.50	100	100	100	100	100	100	100	100	99.7	99.6	99.4	98.0	95.6	86.0	73.2	70.0	23.7	37.8	22.0	15.8	CI	0.014	0.958	5.18	2.453	1.685
	1.50-2.00	100	100	100	100	100	100	100	100	99.8	98.3	97.4	96.4	93.3	87.4	70.2	65.3	24.3	38.6	23.3	15.2	CI	0.014	0.966	5.25	2.556	1.741
	2.00-3.00	100	100	100	100	100	95.0	86.9	77.9	75.0	70.0	69.1	67.8	65.4	62.4	49.8	46.9	16.5	35.9	16.3	19.6	CI	0.007	0.854	5.16	2.593	1.745
	3.00-4.50	56.8	45.1	43.2	35.7	35.7	35.5	35.3	35.3	35.2	34.8	34.6	29.9	22.3	14.7	3.2	1.7	12.5	18.7	NP	NP	GM	0.009	1.146	5.45	2.739	2.241
	4.50-5.10	100	100	100	100	100	95.4	90.0	80.9	75.9	67.0	65.0	63.3	62.3	58.9	51.3	48.8	18.6	38.4	16.6	21.8	CI	0.009	1.245	5.63	2.612	1.763
	5.10-6.00	100	100	100	100	100	92.5	91.3	84.6	77.7	69.5	67.6	62.2	61.2	57.6	52.3	45.3	19.6	39.6	18.7	20.9	CI	0.012	1.212	5.65	2.614	1.765
	6.00-7.00	100	100	100	100	91.3	85.3	83.6	80.6	76.6	74.3	73.6	66.5	61.2	58.9	54.5	51.2	21.2	37.3	17.8	19.4	CI	0.013	1.463	5.89	2.597	1.785
	7.00-7.80	100	100	100	100	94.6	89.6	84.6	81.2	84.4	75.6	70.3	68.6	62.4	60.1	58.6	49.7	20.1	36.5	16.5	19.9	CI	0.012	1.452	5.91	2.591	1.754
	7.80-9.00	100	100	100	100	89.6	85.3	80.3	76.9	75.9	73.1	71.8	70.3	69.2	65.8	55.6	54.3	15.7	38.2	17.0	21.2	CI	0.014	1.698	6.06	2.597	1.763
	9.00-10.00	100	100	100	100	100	100	100	100	100	99.6	99.3	98.6	97.0	93.2	73.4	69.8	28.6	42.6	33.0	9.6	MI	0.015	1.543	5.91	2.587	1.745

Where:
NMC = Natural Moisture Content
LL = Liquid Limit
PL = Plastic Limit
PI = Plasticity Index
$\mathrm{Cl}^{-} \quad=$ Chloride ions
$\mathrm{SO}_{4}{ }^{2-}=$ Sulphate ions

Table B.6-2: Soil Indicator Test Results for KL 30 (B103+5)

SOIL INDICATOR TEST RESULTS FOR KL 30 (B103+5)(USING BS 1377: PART 2: 1990 AND BS 5930:1999+A2:2010)							
Tower Location	Depth (m)					Soil Description	
	0.0-0.40	0.5	23.2	76.4	CI	Very sandy CLAYS of intermediate plasticity	CI
	0.40-1.50	0.4	29.6	70	CI	Very sandy CLAYS of intermediate plasticity	CI
	1.50-2.00	1.8	32.9	65.3	CI	Very sandy CLAYS of intermediate plasticity	CI
	2.00-3.00	30	23	46.9	CI	Gravelly CLAYS of intermediate plasticity	CI
	3.00-4.50	65.2	33.1	1.7	ML	Slightly silty GRAVELS of low plasticity	GM
	4.50-5.10	33	18.2	48.8	CI	Gravelly CLAYS of intermediate plasticity	CI
	5.10-6.00	30.6	24.2	45.3	CI	Gravelly CLAYS of intermediate plasticity	CI
	6.00-7.00	25.7	23.1	51.2	CI	Gravelly CLAYS of intermediate plasticity	CI
	7.00-7.80	24.4	26	49.7	CI	Sandy CLAYS of intermediate plasticity	CI
	7.80-9.00	26.9	18.8	54.3	CI	Gravelly CLAYS of intermediate plasticity	CI
	9.00-10.00	0.5	29.7	69.8	MI	Very sandy SILTS of intermediate plasticity	MI

Table B.6-3: Soil Classification Summary for AP 108/15

SOIL CLASSIFICATION SUMMARY FOR AP 108/15

			Percentage Passing									Atterberg limits			USCS Classification	$\begin{gathered} \text { O } \\ \text { O } \\ \text { d } \\ 0 \end{gathered}$
			$\underset{\text { N }}{\substack{\text { n } \\ \hline}}$	$\begin{aligned} & \text { E } \\ & \\ & \end{aligned}$			$\begin{aligned} & \text { E } \\ & \text { 苛 } \\ & \text { ì } \end{aligned}$		$\underset{\text { n }}{\substack{\text { n }}}$			$\begin{gathered} \text { LL } \\ \text { \% } \end{gathered}$	$\begin{gathered} \text { PL } \\ \% \end{gathered}$	$\begin{aligned} & \text { PI } \\ & \text { \% } \end{aligned}$		
$\begin{aligned} & n \\ & \frac{n}{\infty} \\ & \frac{0}{4} \end{aligned}$	0.00-1.00	8.5\%	100	100	100	98	96	75	60	0.69	2.777	32.80	18.00	14.80	Clayey SAND	SC
	1.00-2.45	7.0\%	100	100	100	96	94	72	55	0.79	2.380	29.60	16.70	12.90	Clayey SAND	SC
	2.45-4.20	6.2\%	100	100	100	99	95	76	36	0.93	2.370	24.70	12.50	12.20	Silty SAND	SM

Table B.6-4: Soil Classification Summary for AP 108/20

SOIL CLASSIFICATION SUMMARY FOR AP 108/20

	Depth (m)			Percentage Passing							Atterberg limits			USCS Classification	
						$\begin{gathered} \text { Egn } \\ \text { ing } \end{gathered}$		$\begin{aligned} & \text { Et } \\ & \text { 馵 } \\ & \text { © } \\ & \text { in } \end{aligned}$		$\underset{\text { in }}{\substack{E \\ \hline}}$	$\begin{gathered} \mathbf{L L} \\ \% \end{gathered}$	$\begin{gathered} \text { PL } \\ \% \end{gathered}$	$\begin{aligned} & \text { PI } \\ & \% \end{aligned}$		
$\begin{aligned} & \underset{1}{0} \\ & \underset{\alpha}{\infty} \\ & \underset{\sim}{\alpha} \end{aligned}$	0.0-1.0	2.483	8.9\%	100	100	87	62	41	30	23	29.8	18.2	11.6	Silty SAND with Gravel	SM
	1.0-2.0	2.380	9.0\%	100	100	99	85	68	53	45	45.6	20.0	25.6	Silty SAND with Gravel	SM
	2.0-3.0	2.412	9.1\%	100	100	97	60	30	22	20	44.8	21.4	23.4	Clayey SAND with Gravel	SC

DETAILED SOIL CLASSIFICATION RESULTS FOR AP 104/5																									GEOTECH SOLUTIONS	
	Depth (m)		Percentage Passing (Particle Size Distribution)																			Atterberg limits			USCS Classification	
			63	50	37.5	28	20	14	10	6.3	5.0	2.36	2.0	1.18	600	425	300	150	75			LL	PL	PI		
		(\%)	mm	$\mu \mathrm{m}$			(\%)	(\%)	(\%)																	
$\begin{aligned} & \frac{n}{z} \\ & \frac{2}{4} \end{aligned}$	0.0-1.0	15.6	100	100	100	100	100	99	95	90	86	85	83	78	72	69	66	59	56	0.92	2.65	30.7	14.4	16.3	Sandy Lean CLAY	CL
	$1.0-3.5$	14.2	100	100	100	100	100	100	100	100	99	93	90	88	86	85	82	75	69	0.55	2.66	42.8	19.4	23.4	Sandy Lean CLAY	CL
	$3.5-5.0$	11.6	100	100	100	100	100	100	100	100	100	100	100	100	96	88	78	60	47	0.65	2.71	35.5	15.4	20.1	Clayey SAND	SC
	$5.0-8.0$	12.5	100	100	100	100	100	100	100	100	100	100	100	100	88	74	69	53	44	0.82	2.70	32.6	14.8	17.8	Clayey SAND	SC
	$8.0-10.0$	17.4	100	100	100	100	100	100	100	100	100	100	100	100	99	98	90	76	68	0.34	2.64	39.9	24.3	15.6	Sandy Lean CLAY	CL
	10.0-12.0	15.5	100	100	100	100	100	100	100	100	100	100	100	100	97	95	78	66	63	0.42	2.66	35.8	19.0	16.8	Sandy Lean CLAY	CL
	$12.0-15.0$	13.5	100	100	100	100	100	100	100	99	99	98	98	97	97	96	94	62	45	0.61	2.71	34.5	14.8	19.7	Clayey SAND	SC
	15.0-16.3	12.6	100	100	100	100	100	100	100	99	99	98	98	97	97	92	88	66	47	0.63	2.69	35.2	18.6	16.6	Clayey SAND	SC
	16.3-18.5	11.8	100	100	100	100	98	98	98	97	97	96	96	96	96	95	95	64	46	0.63	2.72	28.5	NP	NP	Silty SAND	SM
	18.5-20.0	12.2	100	100	100	100	99	99	98	97	97	96	95	95	94	94	92	53	36	0.75	2.73	27.6	NP	NP	Silty SAND	SM

Table B.6-6: Summarised Soil Classification Test for AP 104/5

SUMMARISED SOIL CLASSIFICATION TEST FOR AP 104/5										GEOTECH SOLUTIONS	
	Depth (m)	Moisture Content	Gravel	Sand	Clay \& Silt		Atterberg limits			USCS Classification	Group Symbol
令							LL	PL	PI		
$\stackrel{\square}{-1}$		(\%)	(\%)	(\%)	(\%)		(\%)	(\%)	(\%)		
$\frac{n}{\vdots}$	0.0-1.0	15.6	14	30	56	0.92	30.7	14.4	16.3	Sandy Lean CLAY	CL
	1.0-3.5	14.2	1	29	69	0.55	42.8	19.4	23.4	Sandy Lean CLAY	CL
	3.5-5.0	11.6	0	53	47	0.65	35.5	15.4	20.1	Clayey SAND	SC
	$5.0-8.0$	12.5	0	56	44	0.82	32.6	14.8	17.8	Clayey SAND	SC
	$8.0-10.0$	17.4	0	32	68	0.34	39.9	24.3	15.6	Sandy Lean CLAY	CL
	10.0-12.0	15.5	0	37	63	0.42	35.8	19.0	16.8	Sandy Lean CLAY	CL
	12.0-15.0	13.5	1	54	45	0.61	34.5	14.8	19.7	Clayey SAND	SC
	15.0-16.3	12.6	1	52	47	0.63	35.2	18.6	16.6	Clayey SAND	SC
	16.3-18.5	11.8	3	51	46	0.63	28.5	NP	NP	Silty SAND	SM
	18.5-20.0	12.2	3	61	36	0.75	27.6	NP	NP	Silty SAND	SM

GRAVEL (\%)	SAND (\%)	CLAY \& SILT (\%)
4.3	40.5	55.3

Remarks: These results relate to the sample that was tested

GEOTECH SOLUTIONS

Atterberg Limits Data Sheet
 ASTM D4318-10

Project Name	400 kV KARUMA-KAWANDA TL	Tested By:	EMMA	Date: Date:
Location	AP108/20	Checked By:		
Client Name:	SAMUEL ACIDRI	Test Number:		
Sample Depth	0.0-1.0 m	Gnd Elevation:		

USCS Soil Classification: \qquad

TEST			PLASTIC LIMIT				LIQUID LIMIT			
Variable	NO		1	2	3	4	1	2	3	4
	Var.	Units								
Number of Blows	N	blows					49	36	28	16
Can Number	---	---	P2-16.2				K19-11	P8-18.1	X8-19.4	P1-26.3
Mass of Empty Can	M_{C}	(g)	16.20				11.00	18.10	19.40	26.30
Mass Can \& Soil (Wet)	$\mathrm{M}_{\text {CMS }}$	(g)	17.40				22.00	29.30	30.00	41.00
Mass Can \& Soil (Dry)	$\mathrm{M}_{\mathrm{CDS}}$	(g)	17.20				19.20	26.40	27.20	36.90
Mass of Soil	Ms	(g)	1.00				8.20	8.30	7.80	10.60
Mass of Water	M_{w}	(g)	0.20				2.80	2.90	2.80	4.10
Water Content	w	(\%)	20.0				34.1	34.9	35.9	38.7

Liquid Limit (LL or w_{L}) (\%):	36.60
Plastic Limit (PL or w_{P}) (\%):	20.00
Plasticity Index (PI) (\%):	16.60
USCS Classification:	CL

PI at "A" Line = 0.73(LL-20)
One Point Liquid Limit Calculation:

$$
\mathrm{LL}=w_{n}(\mathrm{~N} / 25)^{0.12}
$$

PROCEDURE USED

Atterberg Limits Data Sheet

ASTM D4318-10

Project Name:	400 kV KARUMA-KAWANDA TL	Tested By:	EMMA	Date: Date:
Location:	AP108/20	Checked By: Test Number: Gnd Elevation:		
Client Name:	SAMUEL ACIDRI			
Sample Depth:	1.0-2.0 m			
USCS Soil	sification:			

TEST			PLASTIC LIMIT				LIQUID LIMIT			
Variable	NO		1	2	3	4	1	2	3	4
	Var.	Units								
Number of Blows	N	blows					48	38	28	17
Can Number	---	---	P2-16.2				W6-17.5	S6-15.8	A1-11	X2-17.4
Mass of Empty Can	Mc	(g)	16.20				17.50	15.80	11.00	17.40
Mass Can \& Soil (Wet)	$\mathrm{M}_{\mathrm{CMS}}$	(g)	17.40				36.90	25.00	22.50	39.40
Mass Can \& Soil (Dry)	$\mathrm{M}_{\text {cDs }}$	(g)	17.20				31.40	22.30	18.90	32.20
Mass of Soil	M_{S}	(g)	1.00				13.90	6.50	7.90	14.80
Mass of Water	M_{w}	(g)	0.20				5.50	2.70	3.60	7.20
Water Content	w	(\%)	20.0				39.6	41.5	45.6	48.6

Liquid Limit (LL or w_{L}) (\%):	45.60
Plastic Limit (PL or w_{P}) (\%):	20.00
Plasticity Index (PI) (\%):	25.60
USCS Classification:	CL

Pl at "A" Line $=0.73($ LL-20 $)$
One Point Liquid Limit Calculation:

$$
\mathrm{LL}=w_{n}(\mathrm{~N} / 25)^{0.12}
$$

PROCEDURE USED

Atterberg Limits Data Sheet

ASTM D4318-10

USCS Soil Classification: \qquad

TEST			PLASTIC LIMIT				LIQUID LIMIT			
Variable	NO		1	2	3	4	1	2	3	4
	Var.	Units								
Number of Blows	N	blows					48	36	25	18
Can Number	---	---	Z8-17.6				S8-17.7	Z7-15.9	W7-15.6	Z10-16.5
Mass of Empty Can	M_{C}	(g)	17.60				17.70	15.90	15.60	16.50
Mass Can \& Soil (Wet)	$\mathrm{M}_{\text {CMS }}$	(g)	19.30				32.10	24.70	25.90	32.10
Mass Can \& Soil (Dry)	$\mathrm{M}_{\mathrm{CDS}}$	(g)	19.00				28.00	22.10	22.80	27.00
Mass of Soil	M	(g)	1.40				10.30	6.20	7.20	10.50
Mass of Water	M_{w}	(g)	0.30				4.10	2.60	3.10	5.10
Water Content	w	(\%)	21.4				39.8	41.9	43.1	48.6

Liquid Limit (LL or w_{L}) (\%):	44.80
Plastic Limit (PL or w_{P}) (\%):	21.43
Plasticity Index (PI) (\%):	23.37
USCS Classification:	CL

Pl at "A" Line $=0.73($ LL-20)
One Point Liquid Limit Calculation:

$$
\mathrm{LL}=w_{n}(\mathrm{~N} / 25)^{0.12}
$$

Remarks: These results relate to the sample that was tested
GEOTECH SOLUTIONS

Remarks: These results relate to the sample that was tested
GEOTECH SOLUTIONS

Remarks: These results relate to the sample that was tested
GEOTECH SOLUTIONS

Appendix B.7-Chemical Analysis Tests

Table B.7-1: Summary for Water Chemical Test Results for KL 30 (B103+5)

WATER CHEMICAL RESULTS (BS 1377: Part 3: 1990)					
Tower Location	Depth (m)	Chloride content (g/L)	Sulphate content (g/L)	pH	Group Symbol
KL $30($ B103+5)	1.140	10	0.0686	6.27	CI

Table B.7-2: Soil Chemical Test Results for AP 108/15

CHEMICAL RESULTS FOR AP 108/15								
Tower Location	Depth (\mathbf{m})	Specific Gravity	Sulphate Content	Chloride Content	Bulk Density	$\mathbf{p H}$	USCS Classification	Group Symbol
AP 108/15	1.00	2.777	0.06	0.007	1.820	5.27	Clayey SAND	SC
	2.45	2.380	0.06	0.007	1.803	5.61	Clayey SAND	SC
	4.20	2.370	0.05	0.007	1.803	5.38	Silty SAND	SM

Table B.7-3: Soil Chemical Test Results for AP 108/20

CHEMICAL RESULTS FOR AP 108/20								
Tower Location	Depth (m)	Specific Gravity	Sulphate Content	Chloride Content	Bulk Density	$\mathbf{p H}$	USCS Classification	Group Symbol
AP 108/20	$0.0-1.0$	2.483	0.09	0.008	1.678	5.06	Silty SAND with Gravel	SM
	$1.0-2.0$	2.380	0.06	0.009	1.633	5.14	Silty SAND with Gravel	SM
	$2.0-3.0$	2.412	0.06	0.009	1.696	5.22	Clayey SAND with Gravel	SC

Table B.7-4: Chemical Analysis Results Summary for AP 104/5

CHEMICAL ANALYSIS RESULTS SUMMARY FOR AP 104/5								
Tower Location	Depth (m)	Specific Gravity	$\mathbf{p H}$	Sulphate content	Chloride content	Bulk density	USCS Soil Classification	Group Symbol
	$0.0-1.0$	2.65	6.00	Absent	0.026	1.712	Sandy Lean CLAY	CL
	$1.0-3.5$	2.66	7.10	Absent	0.040	1.725	Sandy Lean CLAY	CL
	$3.5-5.0$	2.71	6.68	Absent	0.038	1.795	Clayey SAND	SC
	$5.0-8.0$	2.70	6.85	Traces	0.030	1.790	Clayey SAND	SC
	$8.0-10.0$	2.64	5.90	Absent	0.015	1.710	Sandy Lean CLAY	CL
	$10.0-12.0$	2.66	6.01	Absent	0.052	1.705	Sandy Lean CLAY	CL
	$12.0-15.0$	2.71	6.10	Absent	0.021	1.772	Clayey SAND	SC
	$15.0-16.3$	2.69	5.88	Absent	0.015	1.768	Clayey SAND	SC
	$16.3-18.5$	2.72	5.94	Absent	0.057	1.789	Silty SAND	SM
	$18.5-20.0$	2.73	5.96	Absent	0.024	1.782	Silty SAND	SM

Appendix B. 8 - Shear and Consolidation Test Results

Table B.8-1: Shear Test Bearing Capacity Results for AP 104/5

$\begin{aligned} & \text { GEOTEC } \\ & \text { SOLUTIO } \end{aligned}$			SHEAR TEST BEARING CAPACITY TEST REPORT FOR AP 104/5								
Project:			Geotechnical Investigation for AP 104/5 Karuma-Kawanda Transmission Line (400 kV)								
Client:			Samuel Acidri								
Location:			AP 104/5 (400 kV Karuma-Kawanda TL)								
Sampling Date:			N/A			Testing Date:			N/A		
Technician:			EO			Checked by:			BK		
EVALUATION OF BEARING CAPACITIES BASED ON GENERAL SHEAR FAILURE											
Location	Depth	Width (B)	Bulk Density	Cohesion (c)	Friction angle (ϕ)	Bearing capacity factors			Ultimate bearing capacity (quit)	Factor of Safety	Allowable bearing capacity (qall)
	(m)	(m)	$\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	(kPa)	(${ }^{\circ}$)	Nc	Nq	Ny	(kPa)	(FoS)	(kPa)
AP 104/5	5.20	1	1.790	12.30	21	18.92	8.26	4.31	1025	3	342
	10.40	1	1.745	18.50	15	12.86	4.45	1.52	1043	3	348
Remarks: 1) The Ge 2) Terzagh $\mathrm{q}_{\text {all }}=$ GEOTECH SO Technical M	ral Shea Formu $\frac{\text { nult }}{0 \mathrm{OS}}=$ UTIONS ager	Failure for Ulti $c+0.5\}$ LTD	s consider ate Soil B $\mathrm{N}_{\mathrm{Y}}+\mathrm{qN} \mathrm{~N}_{\mathrm{q}}$	in design ring Capacit	ng with a of a Squa	trip fou Footin	was	the	pective depth of B own below:	1.0m.	

Table B.8-2: Shaft resistance and end bearing resistance for AP 104/5

												z°			
$$	1.00	Clay	2	0.75	18.00	8.19	-	0.45	24	12	-	-	11.1	5.4	108.0
	2.30	Clay	4	0.75	18.00	8.19	-	0.45	48	24	-	-	21.8	10.8	216.0
	3.60	Clay	7	0.75	18.00	8.19	-	0.45	84	42	-	-	32.4	18.9	378.0
	4.90	Sand	15	0.85	18.50	8.69	16	0.55	180	-	34	30	43.7	15.4	1311.7
	6.20	Sand	19	0.95	18.50	8.69	18	0.55	228	-	36	30	55.0	423.9	1650.6
	7.50	Sand	19	0.95	18.50	8.69	18	0.55	228	-	36	30	66.3	510.8	1989.5
	8.80	Sand	19	0.95	18.50	8.69	18	0.55	228	-	36	30	77.6	597.6	2328.5
	10.10	Sand	32	1.00	18.50	8.69	29	0.55	384	-	36	60	88.9	684.4	5334.7
	11.40	Sand	31	1.00	18.50	8.69	28	0.55	372	-	36	60	100.2	771.3	6012.5
	12.70	Sand	21	1.00	18.50	8.69	19	0.55	252	-	36	30	111.5	858.1	3345.2
	14.00	Sand	21	1.00	18.50	8.69	19	0.55	252	-	36	30	122.8	945.0	3684.1
	15.30	Sand	26	1.00	18.50	8.69	24	0.55	312	-	36	30	134.1	1031.8	4023.0
	16.60	Sand	24	1.00	18.50	8.69	22	0.55	288	-	36	30	145.4	1118.6	4361.9
	17.90	Sand	25	1.00	18.50	8.69	23	0.55	300	-	36	30	156.7	1205.5	4700.8
	19.20	Sand	27	1.00	18.50	8.69	25	0.55	324	-	36	60	168.0	1292.3	10000.0

If the foundation is constructed with drilling fluids and there is uncertainty on the base conditions, then design is based on no or reduced load carrying capacity on the base. If the movement required to mobilize the base is unacceptable then no base Bearing Capacity is used.

Table B.8-3: The shear test results for AP 104/5

.	Depth	Width	Width Bulk Density	Cohesion (c)	Friction angle (ϕ)
	(m)	(m)	($\mathrm{Mg} / \mathrm{m}^{3}$)	(kPa)	$\left({ }^{\circ}\right)$
	5.20	1	1.790	12.30	21
	10.40	1	1.745	18.50	15

Table B.8-4: Consolidation Test Results for AP 104/5

$\begin{aligned} & \text { EI } \\ & \text { 惑 } \\ & 0, ~ \end{aligned}$	Test Depth	Initial void ratio (\mathbf{e}_{0})	Initial bulk density ($\gamma \mathrm{b}$)	Coefficient of consolidation (cv)	Coefficient of volume compressib ility, (m_{v})	Preconsolidation pressure, ($\mathbf{p o}_{\mathbf{o}}$)
	(m)	(-)	($\mathrm{Mg} / \mathrm{m}^{3}$)	($\mathrm{cm}^{2} / \mathrm{sec}$)	(m²/MN)	(kPa)
0 $\frac{10}{8}$ $\frac{1}{2}$ 4	10.4-10.7	0.752	1.745	0.0042	0.187	201

Table B.8-5: Bearing Capacity comparison of Shear Strength Test and SPT

Location	Depth	Shear Strength Allowable Bearing Capacity, (qall) (m)	SPT Allowable Bearing Capacity, (qall)
	5.20	342	372.4
	10.40	348	798.0

Table B.8-6: Overburden Pressure Results for KL 30 (B103+5)

Geotechnical Investigations		Geotechnical Soil Laboratory:					Location Coordinates	
		Profiled by: J.R. Odeke			Trial Pit No: KL 30		Easting	Northing
		Date: N/A			KL 30 (B103+5)		426605.777	246178.091
Tower Location		Depth (m)		Bulk Density	Vertical Stress per layer	Overburden Pressure	Effect	Overburden ssure (\bar{q})
	From	to	Interval	$\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	(kPa)	(kPa)		(kPa)
KL 30 (B103+5)	0.00	0.40	0.40	1.681	6.6	6.6		6.6
	0.40	1.00	0.60	1.685	9.9	16.5		16.5
	1.00	1.50	0.50	1.685	8.3	24.8		24.8
	1.50	2.00	0.50	1.741	8.5	33.3		33.3
	2.00	3.00	1.00	1.745	17.1	50.4		50.4
	3.00	4.00	1.00	2.241	22.0	72.4		72.4
	4.00	4.50	0.50	2.241	11.0	83.4		83.4
	4.50	5.10	0.60	1.763	10.4	93.8		93.8
	5.10	6.00	0.90	1.765	15.6	109.4		109.4
	6.00	7.00	1.00	1.785	17.5	126.9		126.9
	7.00	7.50	0.50	1.754	8.6	135.5		135.5
KL 30 (B103+5)	7.50	7.80	0.30	1.754	5.2	140.6		140.6
	7.80	9.00	1.20	1.763	20.8	161.4		161.4
	9.00	10.00	1.00	1.745	17.1	178.5		178.5

Table B.8-7: Design Properties of Soils and Concrete as per Technical Specification Schedule 4

S/No.	Normal Foundations	Units	Good Soil	Poor Soil	Soft Rock	Hard Rock	Waterlogged Ground
1	Assumed mass of earth for foundations	$\mathrm{kg} / \mathrm{m}^{2}$	1600	1450	1600	1600	1000
2	Assumed mass of rock for foundations	$\mathrm{kg} / \mathrm{m}^{2}$	-	-	1900	2000	-
3	Assumed mass of concrete for foundations	$\mathrm{kg} / \mathrm{m}^{2}$	2300	2300	2300	2300	1300
4	Assumed ultimate bearing capacity for foundations under specified maximum ultimate loading, including factor of safety	$\mathrm{t} / \mathrm{m}^{2}$	30	15	60	100	15
5	Ultimate shear stress in rock	$\mathrm{t} / \mathrm{m}^{2}$	-	-	3.0	7.5	-
6	Assumed angle of vertical of frustrum of earth resisting uplift (angle of repose)	-	30°	15°	-	-	15°
7	Ultimate plain concrete bearing stress	$\mathrm{kg} / \mathrm{cm}^{2}$	60	60	60	60	60
8	Ultimate adhesion value between galvanised steel and concrete, including factor of safety	$\mathrm{kg} / \mathrm{cm}^{2}$	10.0	10.0	10.0	10.0	10.0
9	Minimum portion of stub loads to be considered in the design of cleats	-	50%	50%	50%	100%	50%

The design considerations to be adopted for the foundations are as indicated in the table above as per the Technical Specification in design for properties of soil and concrete.

Appendix C. 1 - Concrete Cube Test Results

Table C.1-1: Compressive Concrete Cube Crushing Strength Test Results

COMPRESSIVE CONCRETE CUBE CRUSHING RESULTS											
Location	Casting Date	No. of Days	Testing Date	Cube No.	Weight (kg)	Force (kN)	Area $\mathbf{m a}^{2}$	Strength (MPa)	Average (MPa)	Design Strength (Mpa)	Remarks
$\begin{gathered} \text { KL 30 } \\ \text { (B103+5) } \end{gathered}$	09/02/2019	7 Days	16/02/2019	1	8400	593.3	0.0225	26.37	27.71	25	Passed
				2	8364	631.7	0.0225	28.08			
				3	8277	645.3	0.0225	28.68			
		28 Days	09/03/2019	1	8293	906.2	0.0225	40.28	40.08		Passed
				2	8545	999.4	0.0225	44.42			
				3	8277	799.5	0.0225	35.53			
AP 108/15	12/03/2019	7 Days	19/03/2019	1	8344	711	0.0225	31.60	29.81	25	Passed
				2	8352	716.3	0.0225	31.84			
				3	8347	584.6	0.0225	25.98			
		28 Days	09/04/2019	1	8452	973.6	0.0225	43.27	43.31		Passed
				2	8432	962	0.0225	42.76			
				3	8443	987.6	0.0225	43.89			
AP 108/20	18/03/2019	7 Days	25/03/2019	1	8220	526.8	0.0225	23.41	26.05	25	Passed
				2	8255	639.5	0.0225	28.42			
				3	8126	591.9	0.0225	26.31			
		28 Days	15/04/2019	1	8313	867.4	0.0225	38.55	38.78		Passed
				2	8330	821.9	0.0225	36.53			
				3	8295	928.1	0.0225	41.25			
AP 104/5	02/05/2019	7 Days	09/05/2019	1	8100	650.8	0.0225	28.92	30.84	25	Passed
				2	8200	686.7	0.0225	30.52			
				3	8250	744.4	0.0225	33.08			
		28 Days	30/05/2019	1	8350	1203.4	0.0225	53.48	52.77		Passed
				2	8450	1235.7	0.0225	54.92			
				3	8400	1122.7	0.0225	49.90			

Appendix C. 2 - Density Test Results

Table C.2-1: Compaction Test Summary for KL 30 (B103+5)

Table C.2-2: Field Density Test Summary for AP 108/15

$\begin{gathered} \text { GEOTECH } \\ \text { SOLUTIONS } \end{gathered}$	FIELD DENSITY TEST REPORT FOR AP 108/15			
Project:	Construction of structure pads along Karuma - Kawanda 400kV Transmission Line in Uganda.			
Client:	Samuel Acidri			
Test method:	BS 1377: Part 9: 1990	Testing Lab:	Geotech	olutions
Sample Ref.:	GEO/FDT/01-19/00001	Technician:	Herbert	
Site Location:	AP 108/15	Checked by:	Bruce K	
Depth of Test: (mm)		150	150	
Area of Test:		Foundation Pad	Foundation Pad	
Slide/Offset (m):		LHS	RHS	
Layer No.:		Top Layer - Fill	Top Layer - Fill	
Test No.:		1	2	
MOISTURE CONTENT DETERMINATION				
Container Number		A1 ${ }^{\text {A }}$ (2	DS	RE
Mass wet soil + container (g)		285.4	355.7	362.4
Mass dry soil + container (g)		254.2 250.6	324.6	332.2
Mass of container (g)		28.1 20.2	70.7	87.5
Mass of dry soil (g)		226.1	253.9	244.7
Mass of water (g)		31.2 32.1	31.1	30.2
Moisture content (\%)		13.8 13.9	12.2	12.3
Average Moisture Content (\%)		13.9	12.3	
DENSITY DETERMINATION				
Initial mass of sand (g)		8000.0	8000.0	
Final mass of sand (g)		2000.0	2000.0	
Mass of sand in cone (g)		1454.0	1454.0	
Mass of sand in hole (g)		4546.0	4546.0	
Density of sand (g/cm ${ }^{3}$)		1.350	1.350	
Volume of the hole (cm^{3})		3367.4	3367.4	
Mass of soil from the hole (g)		7970.6	7780.6	
In situ wet density ($\mathrm{g} / \mathrm{cm}^{3}$)		2.367	2.311	
In situ dry density ($\mathrm{g} / \mathrm{cm}^{3}$)		2.079	2.058	
Maximum dry density ($\mathrm{g} / \mathrm{cm}^{3}$)		2.062	2.062	
Optimum moisture content (\%)		12.9	12.9	
Relative compaction (\%)		100.8	99.8	
Remarks: These results relate to the sections that were tested. GEOTECH SOLUTIONS (U) LTD Laboratory Manager				

Table C.2-3: Field Density Test Summary for AP 108/20

$\begin{gathered} \text { GEOTECH } \\ \text { SOLUTIONS } \end{gathered}$	FIELD DENSITY TEST REPORT FOR AP 108/20			
Project:	Construction of structure pads along Karuma - Kawanda 400kV Transmission Line in Uganda.			
Client:	Samuel Acidri			
Test method:	BS 1377: Part 9: 1990	Testing Lab:	Geotech	olutions
Sample Ref.:	GEO/SOILS/5-19/00051	Technician:	Herbert	
Site Location:	AP 108/20	Checked by:	Bruce K	
Depth of Test: (mm)		150	150	
Area of Test:		Structure Pad	Structure Pad	
Slide/Offset (m):		LHS	RHS	
Layer No.:		Top Layer - Fill	Top Layer - Fill	
Test No.:		1	2	
MOISTURE CONTENT DETERMINATION				
Container Number		B1 ${ }^{\text {B27 }}$	OP	XY
Mass wet soil + container (g)		286.7 292.7	478.5	424.1
Mass dry soil + container (g)		264.0 268.7	441.7	393.8
Mass of container (g)		28.1 20.2	70.7	87.5
Mass of dry soil (g)		235.9 248.5	371.0	306.3
Mass of water (g)		22.7 24.0	36.8	30.3
Moisture content (\%)		9.6 9.7	9.9	9.9
Average Moisture Content (\%)		9.6	9.9	
DENSITY DETERMINATION				
Initial mass of sand (g)		7000.0	7000.0	
Final mass of sand (g)		1907.0	1740.0	
Mass of sand in cone (g)		1454.0	1454.0	
Mass of sand in hole (g)		3639.0	3806.0	
Density of sand (g/cm ${ }^{3}$)		1.350	1.350	
Volume of the hole (cm^{3})		2695.6	2819.3	
Mass of soil from the hole (g)		5191.0	5290.0	
In situ wet density ($\mathrm{g} / \mathrm{cm}^{3}$)		1.926	1.876	
In situ dry density ($\mathrm{g} / \mathrm{cm}^{3}$)		1.756	1.707	
Maximum dry density ($\mathrm{g} / \mathrm{cm}^{3}$)		1.846	1.846	
Optimum moisture content (\%)		11.4	11.4	
Relative compaction (\%)		95.1	92.5	
Remarks: These results relate to the sections that were tested. GEOTECH SOLUTIONS (U) LTD Laboratory Manager				

Table C.2-4: Maximum Dry Density Test Summary for AP 108/20

Table D-1: AP 104/5 - Static Axial Uplift (Tensile) Load Test

Client:		Samuel Acidri		Testing Firm:				Kalpataru Power Transmission Ltd				Date:		11/07/2019		
STATIC AXIAL UPLIFT (TENSILE) FOUNDATION LOAD TEST -FIELD RECORD SHEET																
400 kV KARUMA-KAWANDA TRANSMISSION LINE PROJECT (UGANDA)																
Type of Test: Foundation Type:			Static Axial Uplift (Tensile) Load Test							Foundation Location:			AP 104/5			
			Waterlogged (Pile Foundation - 900 mm Diameter)						Site Weather:				Dry and Partly Cloudy			
S/No.	Start Time	End Time	Elapsed Time (Minute)	Load Step (\%)	Test Load			Actual Load Indication (Ton)	Foundation Displacement (Millimetres)							
							Gauge 1 Reading (G1)		Gauge 2 Reading (G2)							
					kN	Ton			Initial	Middle	Final	Initial	Middle	Final		
1	11:02	11:12	10	10	55.57	5.7		10	5.7	0.00	0.00	0.00	0.01	0.04	0.04	$18^{\circ} \mathrm{C}$
2	11:14	11:24	10	25	138.92	14.2	10	15	0.00	0.00	0.00	0.06	0.05	0.02	$19^{\circ} \mathrm{C}$	
3	11:26	11:36	10	50	277.85	28.3	10	30	0.00	0.00	0.00	0.08	0.07	0.07	$19^{\circ} \mathrm{C}$	
4	11:37	11:47	10	70	388.98	39.7	10	40	0.04	0.07	0.10	0.12	0.13	0.16	$19^{\circ} \mathrm{C}$	
5	11:48	11:58	10	80	444.55	45.3	10	45.3	0.14	0.16	0.19	0.18	0.21	0.23	$20^{\circ} \mathrm{C}$	
6	11:59	12:09	10	90	500.12	51.0	10	51	0.22	0.20	0.15	0.26	0.24	0.20	$22^{\circ} \mathrm{C}$	
7	12:10	12:40	30	100	555.69	56.7	30	57	0.19	0.11	0.01	0.22	0.15	0.09	$24^{\circ} \mathrm{C}$	

Note:

After withstanding 100% of the design load for a waiting period of 30 minutes, the foundation is deemed to have successfully passed as per the International Standard EN 61773.

Table D-2: AP 104/5 - Lateral Load Test

Note:

After withstanding 100% of the design load for a waiting period of 30 minutes, the foundation is deemed to have successfully passed as per the International Standard EN 61773.

Table D-3: AP 104/5 - Compressive Load Test

Note:
After withstanding 100% of the design load for 30 minutes waiting period, the foundation is deemed to have successfully passed as per EN 61773 .

Table D-4: AP 108/20 - Static Axial Uplift (Tensile) Load Test

Client:		Samuel Acidri		Testing Firm:				Kalpataru Power Transmission Ltd				Date:		05/05/2019		
STATIC AXIAL UPLIFT (TENSILE) FOUNDATION LOAD TEST -FIELD RECORD SHEET																
Type of Test: Foundation Type:			Static Axial Uplift (Tensile) Load Test Good Soil (Murram soil location)					Foundation Location: Site Weather:						$\begin{array}{r} \text { AP } 108 / 20 \\ \text { Dry and Sunny } \end{array}$		
S/No.	Start Time	End Time	ElapsedTime(Minute)	Load Step (\%)	Test Load			Actual Load Indication (Ton)	Foundation Displacement (Millimetres)							
							Gauge 1 Reading (G1)		Gauge 2 Reading (G2)							
					kN	Ton			Initial	Middle	Final	Initial	Middle	Final		
1	2:17	2:27	10	10	59.45	6.1		10	6.1	0.00	0.00	0.00	0.00	0.00	0.01	$26^{\circ} \mathrm{C}$
2	2:28	2:38	10	25	148.61	15.2	10	15.2	-0.03	-0.04	-0.05	0.00	0.01	0.01	$27^{\circ} \mathrm{C}$	
3	2:40	2:50	10	50	297.23	30.3	10	30.3	-0.17	-0.17	-0.17	-0.04	-0.04	-0.03	$29^{\circ} \mathrm{C}$	
4	2:51	3:01	10	70	416.12	42.4	10	42.5	-0.27	-0.30	-0.30	-0.02	-0.02	-0.02	$30^{\circ} \mathrm{C}$	
5	3:02	3:12	10	80	475.56	48.5	10	48.5	-0.37	-0.38	-0.40	0.00	0.03	0.05	$31^{\circ} \mathrm{C}$	
6	3:13	3:23	10	90	535.01	54.6	10	$54.6{ }^{(1)}$	-0.56	-0.58	-0.61	0.13	0.15	0.14	$31^{\circ} \mathrm{C}$	
7	3:25	3:55	30	100	594.45	60.6	30	$61.0{ }^{(2)}$	-0.77	-0.86	-0.87	0.11	0.18	0.19	$30^{\circ} \mathrm{C}$	
8	3:57	4:00	3	110	653.90	66.7	3	67	-1.07		-1.08	0.14		0.13	$29^{\circ} \mathrm{C}$	
9	4:01	4:04	3	120	713.34	72.7	3	73	-1.26		-1.30	0.05		0.04	$29^{\circ} \mathrm{C}$	
10	4:05	4:08	1	130	772.79	78.8	3	80	-1.64			-0.21			$28^{\circ} \mathrm{C}$	

Note:

(1) At 90% design load, pressure on the jack reduced and the load values reached approx. 53MT instead of 54.5MT.
(2) At 100% design load, pressure on the jack reduced and the load values reached approx. 60 MT instead of 60.6 MT after 15 minutes waiting period. Hence, the load on site was increased to 63MT and kept it balancing for the remaining 15 minutes waiting period.

Table D-5: AP 108/15 - Static Axial Uplift (Tensile) Load Test

Client:		Samuel Acidri		Testing Firm:				Kalpataru Power Transmission Ltd				Date:		22/05/2019		
STATIC AXIAL UPLIFT (TENSILE) FOUNDATION LOAD TEST -FIELD RECORD SHEET 400 kV KARUMA-KAWANDA TRANSMISSION LINE PROJECT (UGANDA)																
Type of Test: Foundation Type:			Static Axial Uplift (Tensile) Load Test ST-Poor Soil -Dry (Black cotton soil location)					Foundation Location: Site Weather:					AP 108/15 Dry and Sunny			
S/No.	Start Time	End Time		Load Step (\%)	Test Load		Waiting Period (Minute)	Actual Load Indication	Foundation Displacement (Millimetres)						荘	
							Gauge 1 Reading (G1)		Gauge 2 Reading (G2)							
					kN	Ton		(Ton)	Initial	Middle	Final	Initial	Middle	Final		
1	10:47	10:57	10	10	72.72	7.4		10	8	-0.0010	-	-0.0010	-0.02	-	-0.02	$25^{\circ} \mathrm{C}$
2	10:59	11:09	10	25	181.80	18.5	10	19	-0.0010	-0.0005	-0.0005	-0.02	-0.02	-0.02	$25^{\circ} \mathrm{C}$	
3	11:13	11:23	10	50	363.60	37.1	10	38	-0.0005	0.0020	0.0020	-0.02	0.02	0.01	$25^{\circ} \mathrm{C}$	
4	11:26	11:36	10	70	509.04	51.9	10	52	0.002	0.0065	0.0075	0.01	0.13	0.15	$26^{\circ} \mathrm{C}$	
5	11:38	11:48	10	80	581.76	59.3	10	60	0.0075	0.0110	0.0120	0.15	0.25	0.30	$26^{\circ} \mathrm{C}$	
6	11:49	11:59	10	90	654.48	66.7	10	67	0.0120	0.0135	0.0130	0.30	0.35	0.33	$27^{\circ} \mathrm{C}$	
7	12:00	12:30	30	100	727.20	74.2	30	75	0.0130	0.0160	0.0190	0.33	0.41	0.44	$27^{\circ} \mathrm{C}$	
8	12:32	12:35	3	110	799.92	81.6	3	82	0.0190	0.0210	0.0220	0.44	0.52	0.54	$28^{\circ} \mathrm{C}$	
9	12:36	12:39	3	120	872.64	89.0	3	90	0.0220	0.0270	0.0285	0.54	0.68	0.70	$28^{\circ} \mathrm{C}$	
10	12:40	12:43	3	130	945.36	96.4	3	97	0.0285	0.0325	0.0335	0.70	0.80	0.83	$28^{\circ} \mathrm{C}$	
12	12:45	12:48	3	140	1018.08	103.9	3	104	0.0335	0.0410	0.0415	0.83	1.00	1.03	$29^{\circ} \mathrm{C}$	
13	12:49	12:52	3	150	1090.80	111.3	3	112	0.0415	0.0455	0.0455	1.03	1.14	1.14	$29^{\circ} \mathrm{C}$	

Note:

(1) Minor cracks were observed along the micrometre G1 face at 70% (20 cm crack along the stub), at 80% (3 cm long crack at top of chimney), at 90% (9 cm long crack top of chimney) and at 100% (15 cm long crack). Along the Micrometre G2 face, cracks were observed at 80% (0 cm along stub), at 90% (8 cm long), at 100% (16 cm long), and at 110% (16 cm long on top of chimney and 20 cm on the side).
(2) Severe cracks were observed between 120% and 150%, with minor cracks on the backfilled and compacted soil; and minor pressure drops.

Table D-6: KL 30 (B103+5) - Calibration and Loading sequence details

Load gauge calibration and conversions	
Foundation Testing Date:	$22 / 04 / 2019$
Load:	Oil pressure x active area of piston
Oil pressure 100 bar:	$1 \mathrm{kN} / \mathrm{cm}^{2}$
Active piston Area, A:	$729.9 \mathrm{~cm}^{2}$
Therefore $\mathbf{1} \mathbf{k N}$ load yields:	$1 / 729.9$ in $\mathrm{kN} / \mathrm{cm}^{2}(100$ bars $)$ using one jack
Design Load = 962.26 kN	(962.26×0.137) bars $=131.79$ bars
Target Load $=\mathbf{1 2 5 0 . 9 4} \mathbf{~ k N}$	(1250.94×0.137) bars $=171.36$ bars

Load steps percentage	Load steps	Load steps	Pressure pump reading
(\%)	$\mathbf{(k N)}$	(Tonnes)	(bars)
25	240.5	24.1	32.95
50	481.0	48.1	65.89
70	673.4	67.3	92.26
80	769.6	77.0	105.44
90	865.8	86.6	118.61
100	962.26	96.2	131.79
110	1058.2	105.8	144.97
120	1154.4	115.4	158.15
130	1250.9	125.1	171.36

Loading sequence					
Load		Reading time interval	Cumulative time		
\% of design load	kN	Ton	min		
25	240.5	13.03	0		
			5		
50	481.0	48.1	10		

80	769.6	77	0	50
			5	55
			10	60
90	865.8	86.6	0	65
			5	70
			10	75
100	962.3	96.2	0	80
			5	85
			10	90
			20	100
			30	110
110	1058.2	105.8	0	115
			5	118
120	1154.4	115.4	0	123
			5	126
130	1250.9	125.1	0	131
			5	134

Table D-7: KL 30 (B103+5) - Record of Load Testing Readings

Axial Uplift Load Test Report for KL 30 (IEC 1773: 1996)													
Project:			Axial Uplift Load Test Foundation (132 kV Karuma-Lira Transmission Line)										
Foundation Type:			DB-Waterlogged Location			Foundation Base Size:			$4.5 \mathrm{~m} \times 4.5 \mathrm{~m}$		Testing Date:		22/04/2019
Coordinate:			N 426605.777, E 246178.091			Client:			Samuel Acidri / Sinohydro Corporation Ltd				
Design Load:			962.26 kN (96.2 Ton)			Weather:			Sunny / cloudy and occasional winds				
Target Load:			1250.94 kN (125.1 Ton)			Testing Firm:			COMATLAB (U) Lt		A CIMATLAB		
No.	\% of design load	Test Load (kN)	Indication Load (oil pressure, bars)	Elapsed time	Displacement						Temp $\left({ }^{\circ} \mathrm{C}\right)$	Load Cell	Remarks
					$\begin{gathered} \text { Gauge A } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Gauge B } \\ \text { (mm) } \end{gathered}$	$\begin{gathered} \text { Gauge D } \\ (\mathrm{mm}) \end{gathered}$	Gauge A disp. (mm)	Gauge B disp. (mm)	$\begin{gathered} \text { Gauge D } \\ \text { disp. } \\ \text { (mm) } \\ \hline \end{gathered}$			
1	10\%	96.2	13.18	0	18.00	28.86	38.88				28.6	0.00135	
2	25\%	240.5	32.95	5	18.00	29.25	39.34	0	-0.39	-0.46	28.7	0.00335	
				10	18.00	28.87	38.95	0	0.38	0.39	28.6	0.00334	
				15			39.55	-1	-0.03	-0.6	28.6		Ref. beam interference
3	50\%	481.0	65.89	20	19.52	29.09	39.55	-0.52	-0.19	0	29.3	0.00670	
				25	19.57	28.59	39.42	0.05	0.5	0.13	28.7	0.00612	
				30	19.45	28.11	38.12	0.12	0.48	1.3	29.9	0.01390	
4	70\%	673.4	92.26	35	18.86	26.43	37.25	0.59	1.68	0.87	29.7	0.01390	
				40	18.62	27.70	37.75	0.24	-1.27	-0.5	30.0	0.01385	Strong wind
				45	17.12	26.68	37.60	1.5	1.02	0.15	28.9	0.01380	
5	80\%	769.6	105.44	50	16.02	25.50	36.48	1.1	1.18	1.12	28.9	0.0140	
				55	16.60	26.45	36.42	-0.58	-0.95	0.06	29.9	0.0140	
				60	15.67	25.11	35.55	0.93	1.34	0.87	29.4	0.0140	
6	90\%	865.8	118.61	65	14.85	23.53	34.30	0.82	1.58	1.25	28.6	0.01537	
				70	14.71	23.44	34.18	0.14	0.09	0.12	28.1	0.01537	
				75	13.68	23.43	34.18	1.03	0.01	0	28.2	0.01536	
7	100\%	962.0	131.79	80	14.41	23.19	33.92	-0.73	0.24	0.26	28.2	0.01637	
				85	14.40	23.19	33.92	0.01	0	0	28.6	0.01535	
				90	14.41	23.23	33.93	-0.01	-0.04	-0.01	28.5	0.01635	
				95	14.75	23.65	34.55	-0.34	-0.42	-0.62	28.1	0.01635	
				100	16.52	26.79	37.90	-1.77	-3.14	-3.35	28.3	0.01635	Strong Wind
				105	15.76	25.65	35.40	-1.35	-2.42	2.5	28.1	0.01634	
				110	15.48	25.48	36.31	0.28	0.17	-0.91	28.1	0.01634	
8	110\%	1058.2	144.97	115	15.35	25.3	34.9	0.13	0.18	1.41	28.0	0.0160	Slight Wind
				118	14.62	25.59	34.4	0.73	-0.29	0.5	26.6	0.0160	
9	120\%	1154.4	158.15	123	14.53	25.59	34.25	0.09	0	0.15	27.1	0.0175	
				126	14.52	24.71	34.25	0.01	0.88	0	26.9	0.0175	
10	130\%	1250.6	171.36	131	16.3	27.65	36.6	-1.78	-2.94	-2.35	28.4	0.0160	
				134	16.71	26.99	36.2	-0.41	0.66	0.4	28.7	0.0179	

Table D-8: KL 30 (B103+5) - Determination of Displacement Readings

\% of design load	Load	Time	Gauge A disp.	Gauge B disp.	Gauge D disp.	Ave. disp.	Cumulative disp.	Maximum disp.
	(kN)	(min)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
25	240.5	5	0	-0.39	-0.46	-0.28	-0.28	-0.03
		10	0	0.38	0.39	0.26	-0.03	
		15	-1	-0.03	-0.6	-0.54	-0.57	
50	481.0	20	-0.52	-0.19	0	-0.24	-0.81	0.02
		25	-0.05	0.5	0.13	0.19	-0.61	
		30	0.12	0.48	1.3	0.63	0.02	
70	673.4	35	0.59	1.68	0.87	1.05	1.07	1.45
		40	0.24	-1.27	-0.5	-0.51	0.56	
		45	1.5	1.02	0.15	0.89	1.45	
80	769.6	50	1.1	1.18	1.12	1.13	2.58	3.14
		55	-0.58	-0.95	0.06	-0.49	2.09	
		60	0.93	1.34	0.87	1.05	3.14	
90	865.8	65	0.82	1.58	1.25	1.22	4.35	4.47
		70	0.14	0.09	0.12	0.12	4.47	
		75	1.03	0.01	0	0.35	4.82	
100	962.3	80	-0.73	0.24	0.26	-0.08	4.74	4.74
		85	0.01	0	0	0.00	4.74	
		90	-0.01	-0.04	-0.01	-0.02	4.72	
		95	-0.34	-0.42	-0.62	-0.46	4.26	
		100	-1.77	-3.14	-3.35	-2.75	1.51	
		105	-1.35	-2.42	2.5	-0.42	1.09	
		110	0.28	0.17	-0.91	-0.15	0.93	
110	1058.2	115	0.13	0.18	1.41	0.57	4.84	5.15
		118	0.73	-0.29	0.5	0.31	5.15	
120	1154.4	123	0.09	0	0.15	0.08	5.23	5.53
		126	0.01	0.88	0	0.30	5.53	
130	1250.6	131	-1.78	-2.94	-2.35	-2.36	5.74	5.96
		134	-0.41	0.66	0.4	0.22	5.96	

Table D-9: KL 30 (B103+5) - Analysis Table

Axial Uplift Load Test Report for KL 30 (IEC 1773: 1996)															
Project:				Axial Uplift Load Test Foundation (132 kV Karuma-Lira Transmission Line)											
Foundation Type:				DB-Waterlogged Location					Foundation Base Size:				$4.5 \mathrm{~m} \times 4.5 \mathrm{~m}$		
Coordinate:				N 426605.777, E 246178.091					Depth:				-4.5m		
Design Load:				962.26 kN (96.2 Ton)					Weather:				Sunny/ cloudy and occasional winds		
Target Load:				1250.94 kN (125.1 Ton)					Gauge:				A, B \& D		
	$\%$ of design load	Test Load (kN)	Indication Load (bars)	Displacement										Load Cell	Remarks
No.				Elapsed time	Gauge A (mm)	Gauge B (mm)	Gauge D (mm)	Gauge A disp. (mm)	$\begin{gathered} \hline \text { Gauge } \\ \text { B } \\ \text { disp. } \\ \text { (mm) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Gauge } \\ \text { D } \\ \text { disp. } \\ \text { (mm) } \end{gathered}$	Ave. disp. (mm)	Cumm. Disp. (mm)	Max. disp. (mm)		
1	10\%	96.2	13.18	0	18.00	28.86	38.88	0	0	0	0	0	0	0.00135	
2	25\%	240.5	32.95	5	18.00	29.25	39.34	0	-0.39	-0.46	-0.28	-0.28	-0.03	0.00335	
				10	18.00	28.87	38.95	0	0.38	0.39	0.26	-0.03		0.00334	Ref. beam interference
				15	19.00		39.55	-1	-0.03	-0.6	-0.54	-057			Ref. beam interference
3	50\%	481.0	65.89	20	19.52	29.09	39.55	-0.52	-0.19	0	-0.24	-0.81	0.02	0.00670	
				25	19.57	28.59	39.42	0.05	0.5	0.13	0.19	-0.61		0.00612	
				30	19.45	28.11	38.12	0.12	0.48	1.3	0.63	0.02		0.01390	
4	70\%	673.4	92.26	35	18.86	26.43	37.25	0.59	1.68	0.87	1.05	1.07	1.45	0.01390	
				40	18.62	27.70	37.75	0.24	-1.27	-0.5	-0.51	0.56		0.01385	Strong wind
				45	17.12	26.68	37.60	1.5	1.02	0.15	0.89	1.45		0.01380	

5	80\%	769.6	105.44	50	16.02	25.50	36.48	1.1	1.18	1.12	1.13	2.58	3.14	0.0140	
				55	16.60	26.45	36.42	-0.58	-0.95	0.06	-0.49	2.09		0.0140	
				60	15.67	25.11	35.55	0.93	1.34	0.87	1.05	3.14		0.0140	
6	90\%	865.8	118.61	65	14.85	23.53	34.30	0.82	1.58	1.25	1.22	4.35	4.47	0.01537	
				70	14.71	23.44	34.18	0.14	0.09	0.12	0.12	4.47		0.01537	
				75	13.68	23.43	34.18	1.03	0.01	0	0.35	4.82		0.01536	
7	100\%	962.0	131.79	80	14.41	23.19	33.92	-0.73	0.24	0.26	-0.08	4.74	4.74	0.01637	
				85	14.40	23.19	33.92	0.01	0	0	0.00	4.74		0.01535	
				90	14.41	23.23	33.93	-0.01	-0.04	-0.01	-0.02	4.72		0.01635	
				95	14.75	23.65	34.55	-0.34	-0.42	-0.62	-0.46	4.26		0.01635	
				100	16.52	26.79	37.90	-1.77	-3.14	-3.35	-2.75	1.51		0.01635	Strong Wind
				105	15.76	25.65	35.40	-1.35	-2.42	2.5	-0.42	1.09		0.01634	
				110	15.48	25.48	36.31	0.28	0.17	-0.91	-0.15	0.93		0.01634	
8	110\%	1058.2	144.97	115	15.35	25.3	34.9	0.13	0.18	1.41	0.57	4.84	5.15	0.0160	Slight Wind
				118	14.62	25.59	34.4	0.73	-0.29	0.5	0.31	5.15		0.0160	
9	120\%	1154.4	158.15	123	14.53	25.59	34.25	0.09	0	0.15	0.08	5.23	5.53	0.0175	
				126	14.52	24.71	34.25	0.01	0.88	0	0.30	5.53		0.0175	
10	130\%	1250.6	171.36	131	16.3	27.65	36.6	-1.78	-2.94	-2.35	-2.36	5.74	5.96	0.0160	
				134	16.71	26.99	36.2	-0.41	0.66	0.4	0.22	5.96		0.0179	

Table D-10: KL 30 (B103+5) - Hyperbolic analysis method

\% of design load	Load	Time	Maximum displacement	Displacement/Load
	(kN)	(min)	(mm)	[(mm/kN) $\left.\times 10^{-3}\right]$
25	240.5	5	$-0.03=0.0$	0.00
		10		
		15		
50	481.0	20	0.02	0.04158
		25		
		30		
70	673.4	35	1.45	2.153252
		40		
		45		
80	769.6	50	3.14	4.080042
		55		
		60		
90	865.8	65	4.47	5.162855
		70		
		75		
100	962.3	80	4.74	4.927235
		85		
		90		
		95		
		100		
		105		
		110		
110	1058.2	115	5.15	4.866755
		118		
120	1154.4	123	5.53	4.790367
		126		
130	1250.6	131	5.96	4.765712
		134		

Displacement against Temperature

- Displacement against Temperature ——Linear (Displacement against Temperature)

Fig. D-1 (a): KL 30- Static Load test Graphs

KL 30 STATIC LOAD TEST GRAPHS

Graph of Displacement/Load against Maximum Displacement

Fig. D-1 (b): KL 30- Static Load test Graphs

Graph of Displacement/Load against Displacement (Gauge 1)

Fig. D-2 (a): AP 108/15- Static Load test Graphs

AP 108/15 STATIC LOAD TEST GRAPHS

Graph of Displacement/Load against Displacement (Gauge 2)

Graph of Load against Displacement (Gauge 1)

-—Gauge 1 Displacement Readings

Graph of Load against Displacement

Fig. D-2 (b): AP 108/15- Static Load test Graphs

Fig. D-3 (a): AP 108/20- Static Load test Graphs

Fig. D-3 (b): AP 108/20- Static Load test Graphs

AP 104/5 UPLIFT LOAD TEST GRAPHS
Graph of Load against Displacement (Gauge 1)

Graph of Load against Displacement (Gauge 2)

Graph of Load against Displacement (Gauges 1\&2)

\multimap Gauge $2 \longrightarrow$ Gauge 1

Fig. D-4 (a): AP 104/5- Uplift Load test Graphs

Fig. D-4 (b): AP 104/5- Uplift Load test Graphs

Graph of Load against Time

Displacement/Load against Displacement

Fig. D-5: AP 104/5- Lateral Load test Graphs

Fig. D-6: AP 104/5- Compression Load test Graphs

[^1]Table E-1: Research Time Schedule

S/N	Research Stage	Description	2018					2019												2020											
			8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
1	Research Conception	Proposal Preparation																													
		Discussion with prospective supervisors																													
2	Research Planning	Proposal reviews by Supervisors																													
		Consultations with Sinohydro, KPTL, etc.																													
		Preliminary site visits to project areas																													
		Subsequent site visits to project areas																													
3	Research Execution	Literature collection \& Literature Review																													
		Site desktop analysis works																													
		Surveys \& geotechnical investigations																													
		Prescriptive design works																													$\frac{9}{8}$
		Foundation castings and QA/QC checks																													$\stackrel{\square}{8}$
		Execution of insitu Static Loading Tests																													\%
4	Data	Data collection works																													O
		Data analysis works																													浆
5	Report	Preparation of draft reports for review																													名
		Final report copy for supervisor's review																													
		Final Report to Graduate School																													
6	Research Publication	Online Research Publication with IJERT																													
7	Research Reviews	Internal Examiners' Reviews																													
		External Examiners' Reviews																													
8	Powerpoint Presentations	Progress presentations																													
		Viva-Voce presentation																													
9	Project Close	Hardcopy Report- binding \& submission																													
		Graduation																													

International Journal of Engineering Research \& Technology ISSN : 2278-0181, www.ijert.org (Published by : ESRSA Publication)

In IJERT, Volume. 8, Issue. 11, November- 2019

Appendix F - Research Budget

Table F-1: Research Budget

S/No.	Research Cost Breakdown	Qty	Rate	Amount
A	Preliminary Works			
A. 1	Literature review books (Item)	1	300,000	300,000
A. 2	Photocopying of relevant literature (Item)	1	200,000	200,000
A. 3	Purchase of stationary material	1	200,000	200,000
A. 4	Transportation from Kampala to Karuma and back	6	30,000	180,000
A. 5	Field Accommodation and utility payments	3	150,000	450,000
A. 6	Phone call communications	12	35,000	420,000
A. 7	Internet data services (10 GB MTN data)	12	50,000	600,000
A. 8	Meals and refreshment costs (for 4 months in the field)	168	3,000	504,000
A. 9	Incidental Expenses	1	100,000	100,000
A. 10	Up-keep for field assistants (2 No.) per site	6	70,000	420,000
	Sub-Total 1:			3,374,000
B	Data Collection Works			
B. 1	Site Reconnaissance Visitations	3	15,000	45,000
B. 2	Discussions with Stakeholders	6	50,000	300,000
B. 3	Geotechnical investigations and/or access to reports	3	450,000	1,350,000
B. 4	Conducting and witnessing the Uplift Static Load Test and/or accessing previous test results and reports.	3	750,000	2,250,000
	Sub-Total 2:			3,945,000
C	Report Writing Works			
C. 1	Proposal Report writing and binding works	1	12,500	12,500
C. 2	Draft Report Writing for review	2	75,000	150,000
C. 3	Final Report Writing and Presentation works	3	150,000	450,000
	Sub-Total 3:			612,500
TOTAL				7,931,500

Appendix G - Drawings

FDN	DIM TABLE
H 2750 B 4390 W 600 M 300 P 50 D 350 D1 275 $H 1$ 2075 B1 1880 KD 50	

C2

MARK	SHAPE \＆SIZE	DIA	$\begin{aligned} & \text { UNIT WT } \\ & \text { KG/M } \end{aligned}$	LENGTH	$\begin{aligned} & \text { QTY / } \\ & \text { LEG } \end{aligned}$	$\begin{aligned} & \hline \text { STEEL } \\ & \text { FY } 500 \end{aligned}$
C2	$\begin{gathered} 1780 \\ \square_{150} 150 _ \\ \hline \end{gathered}$	14 万	1.21	2970	2×10	71.88
C1		14面	1.21	4630	2×16	179.27
c	误 4290 象	14б	1.21	4590	2×29	322.13
a	\％ P	20 万	2.469	3200	4	31.60
a1	－ 2000	20 万	2.469	3200	8	63.21
b		8¢	0.395	2150	13	11.04
b1		8 ${ }^{\text {d }}$	0.395	1770	13	9.09
TOTAL WEIGHT PER LEG＝						688．22kg

ALL DIMENSIONS ARE IN mm，UNLESS OTHERWISE SPECIFIED．
2 STEEL USED FOR REINFORCEMENT IS OF GRADE 500．STEEL USED FOR STIRRUPS IS OF GRADE 500.
3 GRADE OF CONCRETE USED IS C25 AS PER SPECIFICATION．
4 MINIMUM COVER TO MAIN REINFORCEMENT SHALL BE 100 mm TO BOTTOM SURFACE \＆ 50 mm TO TOP OF SIDE SURFACE AS PER SPECIFICATION．
5 NO FOUNDATION SHALL REST ON FILLED UP SOIL．

FDN	DIM TABLE
H 2750 B 4390 W 600 M 300 P 50 D 350 D1 275 $H 1$ 2075 B1 1880 KD 50	

C2

MARK	SHAPE \＆SIZE	DIA	$\begin{aligned} & \text { UNIT WT } \\ & \text { KG/M } \end{aligned}$	LENGTH	$\begin{aligned} & \text { QTY / } \\ & \text { LEG } \end{aligned}$	$\begin{aligned} & \hline \text { STEEL } \\ & \text { FY } 500 \end{aligned}$
C2	$\begin{gathered} 1780 \\ \square_{150} 150 _ \\ \hline \end{gathered}$	14 万	1.21	2970	2×10	71.88
C1		14面	1.21	4630	2×16	179.27
c	误 4290 象	14б	1.21	4590	2×29	322.13
a	\％ P	20 万	2.469	3200	4	31.60
a1	－ 2000	20 万	2.469	3200	8	63.21
b		8¢	0.395	2150	13	11.04
b1		8 ${ }^{\text {d }}$	0.395	1770	13	9.09
TOTAL WEIGHT PER LEG＝						688．22kg

ALL DIMENSIONS ARE IN mm，UNLESS OTHERWISE SPECIFIED．
2 STEEL USED FOR REINFORCEMENT IS OF GRADE 500．STEEL USED FOR STIRRUPS IS OF GRADE 500.
3 GRADE OF CONCRETE USED IS C25 AS PER SPECIFICATION．
4 MINIMUM COVER TO MAIN REINFORCEMENT SHALL BE 100 mm TO BOTTOM SURFACE \＆ 50 mm TO TOP OF SIDE SURFACE AS PER SPECIFICATION．
5 NO FOUNDATION SHALL REST ON FILLED UP SOIL．

FDN	DIM TABLE
H 2750 B 4390 W 600 M 800 P 50 D 350 D1 275 $H 1$ 2075 B1 1880 KD 50	

C2

MARK	SHAPE \＆SIZE	DIA	$\begin{aligned} & \text { UNIT WT } \\ & \text { KG/M } \end{aligned}$	LENGTH	$\begin{aligned} & \hline \text { QTY / } \\ & \text { LEG } \end{aligned}$	$\begin{gathered} \hline \text { STEEL } \\ \text { FY } 500 \end{gathered}$
C2		14 万	1.21	2970	2×10	71.88
C1	$\stackrel{2290}{2}$	14 ${ }^{\text {d }}$	1.21	4630	2×16	179.27
C	운 4290 －	14б	1.21	4590	2×29	322.13
a	\％ 3420	20 万	2.469	3720	4	36.74
a1	\％ p ¢ 3420	20 万	2.469	3720	8	73.48
b	$\frac{500}{80}$	8\＄	0.395	2150	16	13.59
b1		8 ${ }^{\text {d }}$	0.395	1770	16	11.19
TOTAL WEIGHT PER LEG＝						708.28 kg

1 ALL DIMENSIONS ARE IN mm，UNLESS OTHERWISE SPECIFIED．
2 STEEL USED FOR REINFORCEMENT IS OF GRADE 500．STEEL USED FOR STIRRUPS IS OF GRADE 500.
3 GRADE OF CONCRETE USED IS C25 AS PER SPECIFICATION．
4 MINIMUM COVER TO MAIN REINFORCEMENT SHALL BE 100 mm TO BOTTOM SURFACE \＆ 50 mm TO TOP OF SIDE SURFACE AS PER SPECIFICATION．

QUANTITY／TOWER

CONC．VOL M＾3	C 25	35.008
	C 10	3.856
EXCAVATION．VOL m＾3	211.992	
STEEL KG	FY 500	2833

trpical excavaton detall	EXCAVATION DIMENSION TABLE								
	SOIL TYPE	TOWER TYPE	A	C	D	E	F	G	H
	POOR SOIL	BTB + OM LE	4390	6752	8947	4557	9549	12653	6445
	POOR SOIL	BTB + 1M LE	4390	6945	9140	4750	9822	12926	6718
	POOR SOIL	BTB + 2M LE	4390	7138	9333	4943	10095	13199	6991
	POOR SOIL	$B T B+3 \mathrm{MLE}$	4390	7332	9527	5137	10370	13474	7265
	POOR SOIL	BTB + 4M LE	4390	7525	9720	5330	10642	13747	7538
	POOR SOIL	BTB + $3 \mathrm{M} \mathrm{BE}+0 \mathrm{MLE}$	4390	7332	9527	5137	10370	13474	7265
	POOR SOIL	$B T B+3 M B E+1 M L E$	4390	7525	9720	5330	10642	13747	7538
	POOR SOIL	$B T B+3 M B E+2 M L E$	4390	7718	9913	5523	10915	14020	7811
	POOR SOIL	$B T B+3 M B E+3 M L E$	4390	7912	10107	5717	11190	14294	8086
	POOR SOIL	BTB + $3 \mathrm{M} \mathrm{BE}+4 \mathrm{M} \mathrm{LE}$	4390	8105	10300	5910	11463	14567	8359
	POOR SOIL	BTB + $6 \mathrm{M} \mathrm{BE}+0 \mathrm{MLE}$	4390	7912	10107	5717	11190	14294	8086
	POOR SOIL	$\mathrm{BTB}+6 \mathrm{MBE}+1 \mathrm{M} \mathrm{LE}$	4390	8105	10300	5910	11463	14567	8359
	POOR SOIL	$B T B+6 \mathrm{MBE}+2 \mathrm{M} \mathrm{LE}$	4390	8298	10493	6103	11736	14840	8631
	POOR SOIL	$B T B+6 \mathrm{MBE}+3 \mathrm{MLE}$	4390	8492	10687	6297	12010	15114	8906
	POOR SOIL	$B T B+6 M B E+4 M L E$	4390	8685	10880	6490	12283	15387	9179

[]-2420] BOTTOM AND TOP PLAN (VIEW ON 1-1)

GIRDER 13.5 M.List of $24 \varnothing$ H.R.H Bolts, Nuts and WashersFOR 3.75 M . Long $\times 2$ no. +6.0 M . Long $\times 1$ no.	
SIZE	QTY.
105 mm long bolt	84
125 mm long bolt	64
175 mm long bolt	96
Spring Washers	252
Std. Flat Washers	252

FDN

H	M TABLE
B	3500
W	2640
M	350
P	500
D	350
D1	250
H1	2850
B1	1200
KD	50

C2
Cl

SHEET NO. 2 OF 3

15 NGS. DF 14 mm DIA BAR AT $180 \mathrm{~mm} \mathrm{C/C}$

MARK	SHAPE \& SIZE	DIA	$\begin{aligned} & \text { UNIT WT } \\ & \text { KG/M } \end{aligned}$	LENGTH	$\begin{aligned} & \text { QTY / } \\ & \text { LEG } \end{aligned}$	$\begin{aligned} & \hline \text { STEEL } \\ & \text { FY } 500 \end{aligned}$
C2	ก	14 \$	1.21	2244	2×6	32.58
C1	022540	146	1.21	2880	2×10	69.70
c	운 2540 象	14面	1.21	2840	2×15	103.09
0	\%	20 \$	2.469	3925	4	38.76
a1	앙 3625	16 \$	1.578	3925	8	49.55
b	450	8 8	0.395	1950	17	13.09
b1		8 ¢	0.395	1610	17	10.81
TOTAL WEIGHT PER LEG =						317.58 kg

1 ALL DIMENSIONS ARE IN mm, UNLESS OTHERWISE SPECIFIED.
2 STEEL USED FOR REINFORCEMENT IS OF GRADE 500. STEEL USED FOR STIRRUPS IS OF GRADE 500.
3 GRADE OF CONCRETE USED IS C25 AS PER SPECIFICATION.
4 MINIMUM COVER TO MAIN REINFORCEMENT SHALL BE 100 mm TO BOTTOM SURFACE \& 50 mm TO TOP OF SIDE SURFACE AS PER SPECIFICATION.
5 NO FOUNDATION SHALL REST ON FILLED UP SOIL.
6 NOT MORE THAN 50% BARS SHALL BE LAPPED AT ONE SECTION UNLESS SPECIFIED / SHOWN.
ALL HOOKS, BENDS, LAPS, SPLICES \& DEVELOPMENT LENGTH SHALL BE
AS PER BS: 8110-1985 EXCEPT STATED OTHERWISE.
8 DRAWING NOT TO SCALE

FDN DIM TABLE

H	3500
B	2640
W	550
M	300
P	50
D	350
D1	250
$H 1$	2850
B1	1200
KD	50

C2
Cl

15 Nas．DF 14 mm DIA BAR AT $180 \mathrm{~mm} \mathrm{C/C}$

MARK	SHAPE \＆SIZE	DIA	$\begin{aligned} & \text { UNIT WT } \\ & \text { KG/M } \\ & \hline \end{aligned}$	LENGTH	$\begin{aligned} & \text { QTY / } \\ & \text { LEG } \end{aligned}$	$\begin{aligned} & \hline \text { STEEL } \\ & \text { FY } 500 \end{aligned}$
C2	$\underset{\sim}{\mid 1100} \mathbf{N}_{\square}^{150150 _}$	14 面	1.21	2244	2×6	32.58
C1	$\bigcirc 2540$ ？	14 ${ }^{\text {d }}$	1.21	2880	2×10	69.70
C	윤 2540 象	146	1.21	2840	2×15	103.09
0	\％ p ¢ 3625	20 ${ }^{\text {d }}$	2.469	3925	4	38.76
a1	－ p ¢ 3625	16 丆	1.578	3925	8	49.55
b	$\frac{450}{80}$	86	0.395	1950	17	13.09
b1	$\stackrel{0^{160}}{0^{10}}$	8 8	0.395	1610	17	10.81
TOTAL WEIGHT PER LEG $=$						317.58 kg

1 ALL DIMENSIONS ARE IN mm，UNLESS OTHERWISE SPECIFIED．

2 STEEL USED FOR REINFORCEMENT IS OF GRADE 500．STEEL USED FOR STIRRUPS IS OF GRADE 500.
3 GRADE OF CONCRETE USED IS C25 AS PER SPECIFICATION．
4 MINIMUM COVER TO MAIN REINFORCEMENT SHALL BE 100 mm TO BOTTOM SURFACE \＆ 50 mm TO TOP OF SIDE SURFACE AS PER SPECIFICATION．
5 NO FOUNDATION SHALL REST ON FILLED UP SOIL．
6 NOT MORE THAN 50% BARS SHALL BE LAPPED AT ONE SECTION UNLESS SPECIFIED／SHOWN．
7 ALL HOOKS，BENDS，LAPS，SPLICES \＆DEVELOPMENT LENGTH SHALL BE
AS PER BS：8110－1985 EXCEPT STATED OTHERWISE．
8 DRAWING NOT TO SCALE

(0.5M RAISED CHIMNEY)

FDN DIM TABLE

H	3500
B	2640
W	550
M	800
P	50
D	350
D1	250
$H 1$	2850
B1	1200
KD	50

15 NaS. DF 14 mm DIA BAR AT $180 \mathrm{~mm} \mathrm{C/C}$

$\frac{\text { NOTES:- }}{1 \text { ALL DIMENSIONS ARE IN } \mathrm{mm} \text {, UNLESS OTHERWISE SPECIFIED. }}$

2 STEEL USED FOR REINFORCEMENT IS OF GRADE 500. STEEL USED FOR STIRRUPS IS OF GRADE 500.
3 GRADE OF CONCRETE USED IS C25 AS PER SPECIFICATION.
4 MINIMUM COVER TO MAIN REINFORCEMENT SHALL BE 100 mm TO BOTTOM SURFACE \& 50 mm TO TOP OF SIDE SURFACE AS PER SPECIFICATION.
5 NO FOUNDATION SHALL REST ON FILLED UP SOIL
6 NOT MORE THAN 50\% BARS SHALL BE LAPPED AT ONE SECTION UNLESS SPECIFIED / SHOWN.
7 ALL HOOKS, BENDS, LAPS, SPLICES \& DEVELOPMENT LENGTH SHALL BE
AS PER BS: 8110-1985 EXCEPT STATED OTHERWISE.
8 DRAWING NOT TO SCALE
QUANTITY/TOWER

| CONC.VOL M^3 | C 25 | 15.614 |
| :--- | :--- | :--- | :--- |
| | C 10 | 1.394 |
| EXCAVATION.VOL m^ | 3 | 97.575 |
| STEEL KG | FY 500 | 1328 |

TYPICAL EXCAVATION DETALL											SHEET NO DESICN N 0 TOWER TYY SOLL TYPE	$\begin{aligned} & \text { OF } 17 \\ & \hline 5 / \text { FDN-1 } \\ & \text { TT DA } \end{aligned}$ OOD SOIL
	EXCAVATION DIMENSION TABLE											
	SOIL TYPE	TOWER TYPE	A	C	C1	D	D1	E	E1	F	G	H
	GOOD SOIL	BTB + OM LE	2640	5970	5320	7290	6640	4650	4000	7997	9861	6134
	GOOD SOIL	BTB + 1M LE	2640	6125	5452	7445	6772	4805	4132	8200	10065	6338
	GOOD SOIL	BTB +2 MLE	2640	6280	5583	7600	6903	4960	4263	8403	10268	6541
	GOOD SOIL	$B T B+3 \mathrm{MLE}$	2640	6435	5715	7755	7035	5115	4395	8607	10471	6744
	GOOD SOIL	$\mathrm{BTB}+4 \mathrm{M} \mathrm{LE}$	2640	6591	5847	7911	7167	5271	4527	8811	10675	6949
	GOOD SOIL	BTB $+3 \mathrm{M} \mathrm{BE}+0 \mathrm{MLE}$	2640	6435	5715	7755	7035	5115	4395	8607	10471	6744
	GOOD SOIL	$B T B+3 M B E+1 M L E$	2640	6591	5847	7911	7167	5271	4527	8811	10675	6949
	GOOD SOIL	$B T B+3 \mathrm{MBE}+2 \mathrm{MLE}$	2640	6746	5978	8066	7298	5426	4658	9014	10878	7152
	GOOD SOIL	$B T B+3 \mathrm{MBE}+3 \mathrm{MLE}$	2640	6901	6110	8221	7430	5581	4790	9218	11082	7355
	GOOD SOIL	BTB $+3 \mathrm{M} \mathrm{BE}+4 \mathrm{MLE}$	2640	7056	6241	8376	7561	5736	4921	9421	11284	7558
	GOOD SOIL	$B T B+6 M B E+0 M L E$	2640	6901	6110	8221	7430	5581	4790	9218	11082	7355
	GOOD SOIL	$B T B+6 \mathrm{MBE}+1 \mathrm{MLE}$	2640	7056	6241	8376	7561	5736	4921	9421	11284	7558
	GOOD SOIL	$B T B+6 \mathrm{M} \mathrm{BE}+2 \mathrm{MLE}$	2640	7212	6373	8532	7693	5892	5053	9625	11489	7762
	GOOD SOIL	BTB $+6 \mathrm{M} \mathrm{BE}+3 \mathrm{MLE}$	2640	7367	6504	8687	7824	6047	5184	9828	11691	7965
	GOOD SOIL	BTB $+6 \mathrm{M} \mathrm{BE}+4 \mathrm{MLE}$	2640	7522	6636	8842	7956	6202	5316	10031	11895	8169

(0.5M RAISED CHIMNEY)

TYPICAL ExCanaton detall												$\begin{aligned} & \text { OF } 17 \\ & 5 / \text { FDN-1 } \\ & \text { TT DA } \\ & \text { OOD SOLI } \\ & \text { Chimney } \end{aligned}$
	EXCAVATION DIMENSIONTABLE											
	SOIL TYPE	TOWER TYPE	A	C	C1	D	D1	E	E1	F	G	H
	GOOD SOIL	$B T B+9 M B E+O M L E$	2640	7444	6570	8764	7890	6124	5250	9929	11793	8067
	GOOD SOIL	$B T B+9 M B E+1 M L E$	2640	7600	6702	8920	8022	6280	5382	10133	11997	8271
	GOOD SOIL	$B T B+9 M B E+2 M L E$	2640	7755	6833	9075	8153	6435	5513	10336	12200	8474
	GOOD SOIL	$B T B+9 M B E+3 M L E$	2640	7910	6965	9230	8285	6590	5645	10540	12403	8678
	GOOD SOIL	$B T B+9 M B E+4 M ~ L E ~$	2640	8065	7097	9385	8417	6745	5777	10743	12607	8881
	GOOD SOIL	$\mathrm{BTB}+12 \mathrm{MBE}+0 \mathrm{M} \mathrm{LE}$	2640	7910	6965	9230	8285	6590	5645	10540	12403	8678
	GOOD SOIL	$\mathrm{BTB}+12 \mathrm{MBE}+1 \mathrm{MLE}$	2640	8065	7097	9385	8417	6745	5777	10743	12607	8881
	GOOD SOIL	$B T B+12 \mathrm{MBE}+2 \mathrm{MLE}$	2640	8221	7228	9541	8548	6901	5908	10947	12811	9085
	GOOD SOIL	$B \mathrm{~B} B+12 \mathrm{MBE}+3 \mathrm{MLE}$	2640	8376	7360	9696	8680	7056	6040	11151	13014	9289
B/B WIDTH AT BTB + O M LE (MINIMUM TQWER BASE) FDR TRANSVERSE F B/B WIDTH AT BTB + 0 M LE (MINIMUM TIWER BASE) FDR LINGITUDINAL												

SHEET NO.: 10 OF 13

TOWER TYPE : TT DA (BB+3mBE)
PILE FOUNDATION LOC. NO.AP104/5

EXCAVATION DIMENSION TABLE											
SOILTYPE	TOWER TYPE	A	c	C1	D	D1	E	E1	F	G	H
WATER LOGGED (PILE FOUNDATION)	BTB $+3 \mathrm{M} \mathrm{BE}+$ OM LE	1200	6111	5440	6711	6040	5511	0	8182	9	35
WATER LOGGED (PILE FOUNDATION)	BTB $+3 \mathrm{M} \mathrm{BE}+1 \mathrm{M}$ LE	1200	6267	5572	6867	6172	5667	4972	386	923	753
WATER LOGGED (PILE FOUNDATION)	BTB $+3 \mathrm{M} \mathrm{BE}+2 \mathrm{MLE}$	1200	6422	5704	7022	6304	5822	5104	8590	9437	7743
WATER LOGGED (PILE FOUNDATION)	BTB $+3 \mathrm{M} \mathrm{BE}+3 \mathrm{M}$ LE	1200	6577	5835	7177	6435	5977	5235	8793	9640	7946
WATER LOGGED (PILE FOUNDATION)	BTB $+3 \mathrm{M} \mathrm{BE}+4 \mathrm{M}$ LE	1200	6732	5967	7332	6567	6132	5367	8996	9843	8149

[^2]

Appendix H - Photos

Figure H-1: AP 104/5 (Pile Location)- Site Photo Summaries

Figure H-2: AP 104/5 (Pile Location) - Static Load Tests

AP 108/15 (ST-POOR SOIL) - SITE PHOTO SUMMARIES

Excavation works ongoing

Sand Sieving works ahead of concrete casting

Rebar assembly and pit side cutting

Preparations for pad and column/chimney concrete casting

Figure H-3: AP 108/15 (ST-Poor Soil) - Site Photo Summaries

Figure H-5: AP 108/20 (DA-Good Soil) - Site Photo Summaries \& Static Load Tests

KL 30 (B103+5) (DB-WATERLOGGED SOIL) - SITE PHOTO SUMMARIES

Rebar assembly after completion of foundation excavation

Site QA/QC checks for slump

De-watering of the Foundation pit

Concrete Casting for the Step-Pad foundation section

KL 30 (B103+5) (DB-WATERLOGGED SOIL) - STATIC LOAD TEST

Static Uplift/Tension Load Testing setup

Researcher making test readings

Ground situation during the test at KL 30

Equipment setup for the Test at B103/5 (KL 30)

Commencement of uplift Test at KL 30

Figure H-7: KL 30 (B103+5) (DB-Waterlogged Soil) - Static Load Test

Appendix I-Calculations

FOUNDATION DESIGN CALCULATION FOR AP 108/15

Ultimate Tower Reactions at Base for ST-Tower

Load Case	Joint No.	Load Case No.	Nature of Stub force	Inclined forces on foundation (kN)		
				Compressive/ Uplift	Long side thrust	Transversal side thrust
1	30S	C1- NC NC V \max	Compressive	949.65	4.05	1.958
2	30Y	C1- NC NC V ${ }_{\text {min }}$	Uplift	727.20	4.37	0.34
3	30Y	C1- NC NC V ${ }_{\text {min }}$	Uplift	661.76	1.52	3.47
4	30S	C1- NC NC Vmin	Compressive	855.48	5.86	2.17
Load Case	$\begin{array}{\|l} \hline \text { Joint } \\ \text { No. } \end{array}$	Load Case No.	Nature of Stub force	Inclined forces on foundation (kg)		
				Compressive/ Uplift	Long side thrust	Transversal side thrust
1	30S	C1- NC NC V \max	Compressive	96836	413	200
2	30Y	C1- NC NC V ${ }_{\text {min }}$	Uplift	74153	445	34
3	30Y	C1- NC NC V ${ }_{\text {min }}$	Uplift	67480	155	353
4	30S	C1- NC NC V min	Compressive	87234	598	221
Not	above	dation forces	timate.			

SOIL PROPERTIES FOR FOUNDATION DESIGN

Please refer schedule4: Design-properties of soil and concrete of technical specification.

S/No.	Soil Type	Poor Soil
1	Assumed mass of Earth for foundations, $\gamma_{s}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1450
2	Assumed mass of rock for foundations, $\gamma_{r}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	-
3	Assumed mass of concrete for foundations, $\gamma_{c}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	2300
4	Assumed ultimate bearing capacity for foundations under specified maximum ultimate loading, including factor of safety:	
(a)	$\mathrm{t} / \mathrm{m}^{2}$	15
(b)	$\mathrm{kN} / \mathrm{m}^{2}$	147.099
5	Ultimate shear stress in rock, τ	-
(a)	$\mathrm{t} / \mathrm{m}^{2}$	-
(b)	$\mathrm{kN} / \mathrm{m}^{2}$	15°
6	Assumed angle to vertical of frustum of earth resisting uplift (angle of Repose).	12°
7	Assumed angle to vertical of frustum of earth resisting uplift (angle of repose) considered in foundation design, \varnothing.	

Client: Samuel Acidri/KPTL			FOUNDATION DESIGN CALCULATION FOR AP 108/15	
S/No.	Description	Unit	Calculations/Equations	Results/Remarks
1	Leg-angle, Ø	Degrees	Ø	10.942
2	Length factor			1.037
3	Chimney/Column			Inclined
4	Maximum Loads as per FAT Test			
a)	P-compression, $P_{\text {comp }}$	kN	$P_{\text {comp }}$	949.65
b)	P-tension, $P_{\text {tension }}$	kN	$P_{\text {tension }}$	727.20
c)	Shear -transversal, Tr	kN	Tr	3.47
c)	Shear -longitudinal, Lg	kN	Lg	5.86
5	Footing type			Double slab
6	Footing Dimensions			
a)	Footing depth, H	m	H	2.75
b)	Footing dimensions, Lx W x H	m	$L \times W \times H$	$4.39 \times 4.39 \times 0.35$
c)	Step, L x W x H	m	$L \times W \times H$	$1.88 \times 1.88 \times 0.275$
d)	Footing base, B	m	B	4.39
e)	Lean pad height, P	m	P	0.05
7	Inclined Column/Chimney Dimensions			
	Size, W	m	W	0.6×0.6
	Muff, M	mm	M	800
	Chimney height, H_{1}	mm	H_{1}	2075
	Base thickness, D	mm	D	350
	Step depth, D_{1}	mm	D_{1}	275
	Step width, B_{1}	mm	B_{1}	1880
	Working point height, W_{p}	mm	W_{p}	625
8	Footing Reinforcement			
	Bottom	No. - Dia		$\begin{gathered} 29 \text { No, Dia } 14 @ \\ 153 \text { c/c/ } \end{gathered}$
	Top -step	No. - Dia		$\begin{gathered} 10 \text { No, Dia } 14 @ \\ 197 \text { c/c } \end{gathered}$
	Top -base	No. - Dia		$\begin{gathered} 16 \text { No, Dia } 14 @ \\ 286 \text { c/c } \end{gathered}$
9	Column/Chimney reinforcement			
	Main internal rebars	No. - Dia		$\begin{gathered} \hline 8 \text { No, Dia } 20 @ \\ 153 \text { c/c/ } \end{gathered}$
	Main corner rebars	No. - Dia		$\begin{gathered} \text { 4 No, Dia } 20 @ \\ 197 \text { c/c } \end{gathered}$
	Links	No. - Dia		Dia 8 @ 225 c/c
10	Material Data			
	Concrete density in RCC and PCC $\text { (dry), } \gamma_{c}$	$\mathrm{kg} / \mathrm{m}^{3}$	γ_{c}	2300
	Concrete cover to bottom surface, c	mm	c	100
	Concrete cover to top and side surfaces, c^{\prime}	mm	c^{\prime}	50
	Characteristic concrete strength, $f_{c k}$	MPa	$f_{c k}$	C25
	Characteristic steel strength, $f_{y k}$	MPa	$f_{y k}$	$f_{y k} 500$
11	Data for Checks (Soil cone from edge)			
	Height of soil cone, H_{b}	m	H_{b}	2.05
	Effective soil weight (soil cone + excavation pit weights)	kN	W_{s}	679.501
	Effective concrete weight, W_{c}	kN	W_{c}	77.051
	-in muff		$\gamma_{c} \times M \times W^{2}=\left[\left(\frac{2300 \times 9.81}{1000}\right) \times 0.8 \times 0.6^{2}\right]$	6.496
	-in soil		$\begin{aligned} & {\left[\left(H_{1} \times W^{2}\right)+\left(\left(D \times B^{2}\right)+\left(D_{1} \times B_{1}{ }^{2}\right)\right)\right] x\left(\gamma_{c}-\gamma_{s}\right)} \\ & \left(H_{1} \times W^{2}\right)=\left(2.075 \times 0.6^{2}\right)=0.747 \\ & \left(D \times B^{2}\right)=\left(0.35 \times 4.39^{2}\right)=6.745235 \\ & \left(D_{1} \times B_{1}{ }^{2}\right)=\left(0.275 \times 1.88^{2}\right)=0.97196 \\ & \gamma_{c}=\left(\frac{2300 \times 9.81}{1000}\right)=22.563 \& \gamma_{s}=\left(\frac{1450 \times 9.81}{1000}\right)=14.2245 \\ & \Rightarrow[0.747+(6.745235+0.97196)] x(22.563-14.2245) \end{aligned}$	70.555
12	Uplift check			
	Load case	No.		2

Client: Samuel Acidri/KPTL			FOUNDATION DESIGN CALCULATION FOR AP 108/15	
S/No.	Description	Unit	Calculations/Equations	Results/Remarks
	Load	kN		727.2
	Factor of safety (FoS)			1.040
13	Overturning check			
	Load case	No.		2
	Tensile load (Uplift Load)	kN	Uplift	727.2
	Shear force- transversal, (Tr)	kN	Tr	0.34
	Shear force- longitudinal, (Lg)	kN	Lg	4.37
	Moment due to uplift	kNm	$\begin{aligned} & M_{\text {Uplift }}=\text { Uplift } \times \cos ^{2} \theta \times \frac{B}{3} \\ & \Rightarrow M_{\text {Uplift }}=\left[727.2 \times(\cos 12)^{2} \times\left(\frac{4.39}{3}\right)\right] \end{aligned}$	1018.136
	Moment due to side thrust	kNm	$\begin{aligned} & M_{S T}=\operatorname{Max}(\operatorname{Tr}, L g, S T) \times(M+H-P) \\ & \Rightarrow M_{S T}=4.37 \times(0.8+2.75-0.05) \end{aligned}$	15.295
	Moment due to concrete	kNm	$M_{c}=\left(W_{c} \times \frac{B}{3}\right)=\left(77.051 \times \frac{4.39}{3}\right)$	112.751
	Resisting moment due to soil	kNm	$M_{s}=\left[\left(\frac{W_{s}}{2}\right) \times\left(\frac{5}{6}\right) \times B\right]=\left[\left(\frac{679.501}{2}\right) \times\left(\frac{5}{6}\right) \times 4.39\right]$	1242.921
	Total overturning moment	kNm	$\begin{aligned} & M_{T}=M_{\text {Uplift }}+M_{S T}-M_{c}=(1018.136+15.295-112.751) \\ & \Rightarrow \text { Since } M_{T}<M_{S}, \text { then its } O K . \end{aligned}$	920.680
	Factor of safety, FoS		$F o S=\frac{M_{S}}{M_{T}}=\left(\frac{1242.921}{920.680}\right)$	1.350
14	Base pressure check			
	Load case	No.		1
	Compressive load	kN		949.65
	Shear force (Tr)- transversal force	kN	T.F	1.958
	Shear force (Lg)- longitudinal force	kN	L.F	4.05
	Balancing height for shear in transversal direction (Tr) $-B_{H t}$	m	$B_{H t(T r)}=\frac{\text { Shear force }(T r)}{\sqrt{\text { Passive pressure }}}$ NOTE: Balancing height is greater than chimney/column height. Therefore, it is restricted to the chimney/column height. Passive pressure $\left(\mathrm{P}_{\mathrm{p}}\right)=0.5 \times \mathrm{k}_{\mathrm{p}} \times \gamma_{\mathrm{s}} \mathrm{xW}$ Where: $k_{p}=(1+\sin \varnothing) /(1-\sin \varnothing)$ $\gamma_{s}=\left(\frac{1450 \times 9.81}{1000}\right)=14.2245$	0.549
	Moment due to passive transversal force (Tr)- $M_{p(T r)}$	kNm	$\mathrm{M}_{\text {passive }}(\mathrm{Tr})$ $M_{p(T r)}=P_{p} x\left(B_{H t}\right)^{2} x\left\{\left(\frac{B_{H t}}{3}\right)+\left(H_{1}-0.3-B_{H t}\right)+D+D_{1}\right\}$	3.983
	Balancing height for shear in longitudinal direction (Lg)	m	$B_{H t(L g)}=\frac{\text { Shear force }(L g)}{\sqrt{\text { Passive pressure }}}$ Passive pressure $\left(\mathrm{P}_{\mathrm{p}}\right)=0.5 \times \mathrm{k}_{\mathrm{p}} \mathrm{x} \gamma_{\mathrm{s}} \mathrm{xW}$ Where: $k_{p}=(1+\sin \emptyset) /(1-\sin \varnothing)$	0.789
	Moment due to passive longitudinal force (Lg)- $M_{p(L g)}$	kNm	$\mathrm{M}_{\text {passive }}$ (Lg) $M_{p(L g)}=P_{p} x\left(B_{H t}\right)^{2} x\left\{\left(\frac{B_{H t}}{3}\right)+\left(H_{1}-0.3-B_{H t}\right)+D+D_{1}\right\}$	7.59
	Soil bearing capacity available: $\begin{aligned} & =\mathrm{P} / \mathrm{A} \\ & =\mathrm{P}_{\mathrm{ex}} / \mathrm{Z} \\ & =\mathrm{M} / \mathrm{Z} \text { (Transversal), } M_{(T r)} \\ & =\mathrm{M} / \mathrm{Z} \text { (Longitudinal), } M_{(L g)} \\ & =\text { Maximum pressure } \\ & =\text { Minimum pressure } \end{aligned}$ Factor of safety (FoS)	$\mathrm{kN} / \mathrm{m}^{2}$ $\mathrm{kN} / \mathrm{m}^{2}$ $\mathrm{kN} / \mathrm{m}^{2}$	$\begin{aligned} & \frac{P}{A}=\frac{\left(\frac{P_{\text {comp }}}{\text { L.F }} \times \text { Overload }\right)}{B^{2}} \\ & \frac{P_{\text {ex }}}{Z}=2 \times\left(\frac{P_{\text {comp }}}{L . F}\right) \times \tan \theta \times W_{p} \times \frac{6}{B^{3}} \\ & \left\{M_{(T r)}-M_{p(T r)}\right\} \times \frac{6}{B^{3}} \\ & M_{(T r)}=\text { Shear force }(T r) \times \text { Lever arm } \end{aligned}$ Where: Lever arm $=H+M-P$ $\left\{M_{(L g)}-M_{p(L g)}\right\} \times \frac{6}{B^{3}}$ $M_{(L g)}=$ Shear force $(L g) x$ Lever arm Where: Lever arm $=H+M-P$ $\begin{aligned} & \frac{P}{A}+\frac{P_{e x}}{Z}+M_{(T r)}+M_{(L g)} \\ & \frac{P}{A}-\frac{P_{e x}}{Z}-M_{(T r)}-M_{(L g)} \\ & \text { FoS }=\frac{\text { Soil bearing capacity }}{\text { Max. Pressure }}=\frac{147.099}{68.275} \end{aligned}$	$\begin{aligned} & 147.099 \\ & 51.915 \\ & 15.689 \\ & 0.204 \\ & \\ & 0.467 \\ & 68.275 \\ & 35.555 \\ & 2.155 \end{aligned}$

Client: Samuel Acidri/KPTL			FOUNDATION DESIGN CALCULATION FOR AP 108/15	
S/No.	Description	Unit	Calculations/Equations	Results/Remarks
	Shear force- transversal (Tr)	kN		0.34
	Shear force- longitudinal (Lg)	kN		4.37
	Maximum pressure, P_{2}	$\mathrm{kN} / \mathrm{m}^{2}$	$P_{2}=\frac{\text { Uplift }}{\left(B^{2}-W^{2}\right)}=\left[\frac{727.2}{\left(4.39^{2}-0.6^{2}\right)}\right]$	38.452
	Bending at face of chimney			
	Bending Moment -design, $B M_{\text {Des }}$	kNm	$\begin{aligned} & B M_{\text {Des }}=\left[P_{2} \times \frac{(B-W)^{2}}{8} \times B\right] \\ & \Rightarrow B M_{\text {Des }}=\left[38.452 \times \frac{(4.39-0.6)^{2}}{8} \times 4.39\right] \end{aligned}$	303.087
	Area of steel required, $A_{s t}($ Req $)$	mm^{2}	$\begin{aligned} & A_{s t}(\text { Req }) \\ & k=\frac{M}{b d^{2} f_{c k}}=\frac{303.087 \times 10^{6}}{4390 \times 504^{2} \times 25}=0.011 \leq 0.15, \text { Hence } O K . \\ & Z=d\left[0.5+\left(0.25-\frac{k}{0.9}\right)^{0.5}\right] \ngtr 0.95 d \\ & \Rightarrow Z=504\left[0.5+\left(0.25-\frac{0.011}{0.9}\right)^{0.5}\right]=497.763 \mathrm{~mm} \\ & 0.95 d=0.95 \times 504=478.80 \mathrm{~mm} \\ & \Rightarrow Z=497.763 \mathrm{~mm}>0.95 d=478.80 \mathrm{~mm} \end{aligned}$ Hence take $Z=0.95 d=478.80 \mathrm{~mm}, O K$. $\Rightarrow A_{s t}(\text { Req })=\frac{M}{0.87 f_{y k} Z}=\frac{303.087 \times 10^{6}}{0.87 \times 500 \times 478.80}$	1455.204
	Area of steel provided, $A_{s t}$ (Prov)	mm^{2}	$A_{\text {st }}($ Prov $)=\left(\frac{\pi D^{2}}{4} \times\right.$ No of bars $)=\left(\frac{\pi \times 14^{2}}{4} \times 10\right)$	1539.38
	Bending Moment -resisting, $B M_{\text {Res }}$	kNm	$\left.\begin{array}{l} {\left[0.87 f_{y k} \times A_{s t(\text { prov) }} \times d_{t}\left(1-\frac{0.9738 f_{y k} \times A_{s t}(\text { prov })}{}\right)\right] \times 10^{-6}} \\ f_{c k} \times B_{1} \times d_{t} \end{array}\right]=\left[0.87 \times 500 \times 1539.38 \times 504 \times\left(1-\frac{0.9738 \times 500 \times 1539.38}{25 \times 1880 \times 504}\right)\right] \times 10^{-6} .$	337.472
	Factor of safety (FoS)		$F o S=\frac{B M_{\text {Res }}}{B M_{\text {Des }}}=\left(\frac{337.472}{303.087}\right)$	1.114
	Bending at face of step			
	Bending Moment -design, $B M_{\text {Des }}$	kNm	$\begin{aligned} & B M_{\text {Des }}=\left[P_{2} \times \frac{\left(B-B_{1}\right)^{2}}{8} \times B\right] \\ & \Rightarrow B M_{\text {Des }}=\left[38.452 \times \frac{(4.39-1.880)^{2}}{8} \times 4.39\right] \end{aligned}$	132.934
	Area of steel required, $A_{s t}($ Req $)$	mm^{2}	$\begin{aligned} & A_{s t}(\text { Req }) \\ & k=\frac{M}{b d^{2} f_{c k}}=\frac{132.934 \times 10^{6}}{1880 \times 275^{2} \times 25}=0.0374 \leq 0.15, \text { Hence } O K . \\ & Z=d\left[0.5+\left(0.25-\frac{0.0374}{0.9}\right)^{0.5}\right] \ngtr 0.95 d \\ & \Rightarrow Z=504\left[0.5+\left(0.25-\frac{0.0374}{0.9}\right)^{0.5}\right]=482.105 \mathrm{~mm} \\ & \Rightarrow 0.95 d=0.95 \times 504=478.80 \mathrm{~mm} \\ & \Rightarrow Z=482.105 \mathrm{~mm}>0.95 d=478.80 \mathrm{~mm}, \text { Hence take } Z=0.95 d \\ & \Rightarrow A_{s t}(\text { Req })=\frac{M}{0.87 f_{y k} Z}=\frac{132.934 \times 10^{6}}{0.87 \times 500 \times 478.80} \end{aligned}$	1370.886
	Area of steel provided, $A_{s t}$ (Prov)	mm ${ }^{2}$	$A_{s t}($ Prov $)=\left(\frac{\pi D^{2}}{4} \times\right.$ No of bars $)=\left(\frac{\pi \times 14^{2}}{4} \times 16\right)$	2463.01
	Bending Moment -resisting, $B M_{\text {Res }}$	kNm	$\begin{aligned} & {\left[0.87 f_{y k} \times A_{\text {st (prov) }} \times d_{b}\left(1-\frac{0.9738 f_{y k} \times A_{s t}(\text { prov })}{f_{c k} \times B \times d_{b}}\right)\right] \times 10^{-6}} \\ & =\left[0.87 \times 500 \times 2463.01 \times 229 \times\left(1-\frac{0.9738 \times 500 \times 2463.01}{25 \times 4390 \times 229}\right)\right] \times 10^{-6} \end{aligned}$	233.645
	Factor of safety (FoS)		$F o S=\frac{B M_{\text {Res }}}{B M_{\text {Des }}}=\left(\frac{233.645}{132.934}\right)$	1.758
	Percentage of steel provided in the footing, P_{T}	\%	$\begin{aligned} & P_{T}=100 x \frac{A_{\text {st }(\text { Prov })}}{\text { Total Cross sectional Area }} \\ & \Rightarrow P_{T}=100 \times\left[\frac{(1539.38+2463.01)}{(4390 \times 350)+(1880 \times 275)}\right] \end{aligned}$	0.195
17	Design for Shear			
	Load case	No.		1
	Compressive load	kN		949.65
	Shear force- transversal (Tr)	kN		1.958

Client: Samuel Acidri/KPTL			FOUNDATION DESIGN CALCULATION FOR AP 108/15	
S/No.	Description	Unit	Calculations/Equations	Results/Remarks
	Axial Load	kN		949.65
	Shear force- Transversal (Tr)	kN		1.958
	Shear force- Longitudinal (Lg)	kN		4.05
	Uplift Load (design), $P_{u}($ design $)$	kN	$P_{u(\text { design })}$	949.65
	Lever Arm	m	$\text { Lever } \operatorname{arm}=\frac{\left(H_{1}+M\right)}{1000}$	2.875
	Moment due to Transversal shear force (Tr), $M_{(T r)}$	kNm	$M_{(T r)}=$ Shear force (Tr)x Lever arm	5.629
	Moment due to Longitudinal shear force (Lg), $M_{(L g)}$	kNm	$M_{(L g)}=$ Shear force ($L g$)x Lever arm	11.644
	Moment due to passive transversal pressure (Tr), $M_{(p r-T r)}$	kNm	$M_{(p r-T r)}=$ Passive force x Lever arm Where: Passive pressure $\left(P_{p}\right)=0.5 \times k_{p} \times \gamma_{s} \times W x\left(B_{H t}\right)^{2}$ Lever Arm $=\frac{B_{H t}}{3}+\left(H_{1}-0.3-B_{H t}\right)$	2.759
	Moment due to passive Longitudinal pressure (Lg), $M_{(p r-L g)}$	kNm	$M_{(p r-L g)}=$ Passive force x Lever arm Where: Passive pressure $\left(P_{p}\right)=0.5 \times k_{p} x \gamma_{s} \times W x\left(B_{H t}\right)^{2}$ Lever Arm $=\frac{B_{H t}}{3}+\left(H_{1}-0.3-B_{H t}\right)$	5.058
	Uplift Moment- design (transversal), $M_{u(T r, ~ d e s i g n)}$	kNm	$M_{u(T r, \text { design })}=M_{(T r)}-M_{(p r-T r)}$	2.87
	Uplift Moment- design (longitudinal), $M_{u(L g, ~ d e s i g n)}$	kNm	$M_{u(L g, \text { design })}=M_{(L g)}-M_{(p r-L g)}$	6.586
	Uplift Moment- uniaxially converted, $M_{u(u, c o n v)}$	kNm	$M_{u(u, c o n v)}=M_{u(T r, \text { design })}+M_{u(L g, \text { design })}$	9.456
	Uplift Moment- uniaxial capacity, $M_{u(u, c a p)}$	kNm	PM Curve	534.6
	Factor of Safety (FoS)		$F o S=\frac{M_{u(u, c a p)}}{M_{u(u, c o n v)}}=\frac{534.6}{9.456}$	56.536
	Percentage of steel provided in chimney/inclined column	\%	$\begin{aligned} & P_{T}=100 x \frac{A_{\text {st }(\text { prov })}}{\text { Total Cross sectional Area }} \\ & \Rightarrow P_{T}=100 x\left[\frac{(2513.274+1256.637)}{(600 \times 600)}\right] \end{aligned}$	1.047

STUB DESIGN FOR AP 108/15

S/No.	Description	Unit	Calculations/Equations	Results/Remarks
1	Tower Loads (Ultimate) for maximum body extension			
a)	Compressive weight	kg		96836
	Compressive Load	kN	$F=m g=\left[\frac{(96836 \times 9.81)}{1000}\right]$	949.96
	Side thrust (transversal)	kN		3.46
	Side thrust (Longitudinal)	kN		1.52
b)	Tensile weight	kg		74128
	Tensile Load	kN	$F=m g=\left[\frac{(74128 \times 9.81)}{1000}\right]$	727.20
	Side thrust (transversal)	kN		3.46
	Side thrust (Longitudinal)	kN		1.52
2	Stub Details			
	Stub arrangement	No.		1 single angle
	Stub material			High Tensile (HT)
	Stub section	mm		$200 \times 200 \times 18$
	Stub depth inside concrete	mm		2243
3	Cleat Details			
	Cleat arrangement	No.		2 (back to back)
	Cleat material			HT
	Cleat section	mm		$125 \times 125 \times 12$
	Cleat 1 length	mm	L_{1}	170
	Cleat 1 number	No.		3

	Cleat 2 length	mm	L_{2}	170
	Cleat 2 number	No.		3
4	Bolt Details			
	Diameter of bolts	mm		16
	No. of bolts	No.		3
5	Concrete Details			
	Grade of concrete, $f_{c k}$	$\mathrm{N} / \mathrm{mm}^{2}$	$f_{c k}$	25
6	Stub Area Check as per ASCE 52			
	Stub flange width	mm		200
	Stub thickness	mm		18
	Stub material, $f_{y k}$	$\mathrm{kg} / \mathrm{cm}^{2}$		3518
	Stub area provided	cm^{2}		69.301
	Compressive weight	kg	P	96836
	Transversal side thickness weight	kg		353
	Longitudinal side thickness weight	kg		155
	Resistance side thickness weight	kg	V	385
	Stub area required	cm^{2}		27.67
	Tensile weight	kg	P	74128
	Transversal side thickness weight	kg		353
	Longitudinal side thickness weight	kg		155
	Resistance side thickness weight	kg	V	385
	Stub area required	cm^{2}		22.22
7	Check for stub length in compression			
	Depth of stub in concrete	cm	$\mathrm{D}_{\text {stub (concrete) }}$	224.30
	Punching shear stress for compression	$\mathrm{N} / \mathrm{mm}^{2}$	$\left[0.35 x \sqrt{f_{c k}}\right]=[0.35 \times \sqrt{25}]$	1.75
		$\mathrm{kg} / \mathrm{cm}^{2}$	$V_{\text {shear }(\text { comp })}=\left[0.35 x \sqrt{f_{c k}}\right]=\left[0.35 x \sqrt{\left(\frac{25}{9.81 x(0.1)^{2}}\right)}\right]$	17.838
	Perimeter for shear	cm	$\begin{aligned} & \mathrm{P}=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+\mathrm{EF}+\mathrm{FG}+\mathrm{GH}+\mathrm{HI}+\mathrm{IJ}+\mathrm{JA} \\ & \mathrm{P}=170+125+18+125+90+125+18+125+170+228 \end{aligned}$	119.4
	Therefore, punching shear strength	kg	$\begin{aligned} & V_{\text {shear }(\text { strength })}=\left(\mathrm{D}_{\text {stub }(\text { conc })} \times P \times V_{\text {shear }(\text { comp })}\right)>\text { Compressive wt } \\ & \text { Compressive weight }=96836 \mathrm{~kg} \\ & \Rightarrow V_{\text {shear }(\text { strength })}=224.30 \times 119.40 \times 17.838 \\ & \Rightarrow V_{\text {shear }(\text { strength })}=477727 \mathrm{~kg}>96836 \mathrm{~kg} \end{aligned}$	477727
	Factor of Safety, FoS		$F o S=\frac{477727 \mathrm{~kg}}{96836 \mathrm{~kg}}=4.94>1$, Hence, SAFE	4.94
8	Check for Stub Length in Uplift			
	Punching shear stress for uplift	$\mathrm{kg} / \mathrm{cm}^{2}$	$V_{\text {shear (uplift) }}=\left[0.28 x \sqrt{f_{c k}}\right]=[0.28 x \sqrt{25}]$	14.271
	Therefore, punching shear strength	kg	$\begin{aligned} & V_{\text {shear }(\text { strength })}=\left(\mathrm{D}_{\text {stub }(\text { conc })} \times P \times V_{\text {shear }(\text { uplift })}\right)>\text { Tensile wt } \\ & \text { Tensile weight }=74128 \mathrm{~kg} \\ & \Rightarrow V_{\text {shear }(\text { strength })}=224.30 \times 119.40 \times 14.271 \\ & \Rightarrow V_{\text {shear }(\text { strength })}=382198 \mathrm{~kg}>74128 \mathrm{~kg} \end{aligned}$	382198
	Factor of Safety, FoS		$F o S=382198 \mathrm{~kg} / 74128 \mathrm{~kg}=5.16>1$, Hence, SAFE	5.16

FOUNDATION DESIGN CALCULATION FOR AP 104/5

Ultimate Tower Reactions at Base for +3 MBE

Load Case	Joint No.	Load Case No.	Nature of Stub force	Inclined forces on foundation (kN)		
				Compressive/ Uplift	Long side thrust	Transversal side thrust
5	41S	C1- TW NC NC $\mathrm{V}_{\text {max }}$	Compressive	847.51	0.45	12.475
6	43S	C1- TW NC NC $\mathrm{V}_{\text {min }}$	Uplift	569.05	0.30	12.92
7	44S	C2- BWC MCR Br-V ${ }_{\text {min }}$	Compressive	257.69	20.77	31.62
8	41S	C2- BWC BCR Br-V $\mathrm{V}_{\text {min }}$	Compressive	491.57	26.19	10.50
Load Case	Joint No.	Load Case No.	Nature of Stub force	Inclined forces on foundation (kg)		
				Compressive/ Uplift	Long side thrust	Transversal side thrust
5	41S	C1- TW NC NC $\mathrm{V}_{\text {max }}$	Compressive	86421	46	1272
6	43S	C1- TW NC NC $\mathrm{V}_{\text {min }}$	Uplift	58027	30	1317
7	44S	C2- BWC MCR Br-V $\mathrm{V}_{\text {min }}$	Compressive	26277	2118	3224
8	41S	C2- BWC BCR Br-V $\mathrm{V}_{\text {min }}$	Compressive	50126	2671	1071
Notes: Above foundation forces are ultimate.						

Ultimate Orthogonal Tower Reactions at Base for +3 MBE

Load Case	Joint No.	Load Case No.	Nature of Stub force	Inclined forces on foundation (kN)		
				Compressive/ Uplift	Long side thrust	Transversal side thrust
1	41S	C1- TW NC NC $\mathrm{V}_{\text {max }}$	Compressive	828.52	109.46	141.12
2	43S	C1- TW NC NC $\mathrm{V}_{\text {min }}$	Uplift	555.69	73.41	99.19
3	44S	C2- BWC MCR Br-V ${ }_{\text {min }}$	Compressive	828.52	109.46	141.12
4	41S	C2- BWC BCR Br-V $\mathrm{V}_{\text {min }}$	Compressive	820.01	108.75	143.63
				Inclined forces on foundation (kg)		
Case	No.	Load Case No.	Stub force	Compressive/ Uplift	Long side thrust	Transversal side thrust
1	41S	C1- TW NC NC $\mathrm{V}_{\text {max }}$	Compressive	84485	11162	14390
2	43S	C1- TW NC NC $\mathrm{V}_{\text {min }}$	Uplift	56664	7486	10115
3	44S	C2- BWC MCR Br-V ${ }_{\text {min }}$	Compressive	84485	11162	14390
4	41S	C2- BWC BCR Br-V Vmin	Compressive	83617	11089	14646

Client: Samuel Acidri/KPTL		Foundation Design Calculation for AP 104/5			
S/No.	Ultimate Loadings	Orthogonal	Inclined	Unit	Other Details
1	Compression	84486	86421	kg	Slope = 11.50
2	Tension	56665	58027	kg	
3	Stress Transversal	14646	3224	kg	
4	Stress Longitudinal	11162	2671	kg	

Data for Pile			
S/No.	Item	Description	Unit
1	Number of piles in X-direction	1	No.
2	Number of piles in the Y-direction	1	No.
3	Total number of piles	1	No.
	Type of pile	Simple	
	Type of concrete casting	Cast-in-situ	
	Diameter of pile	0.900	m
	Total length of pile	13.80	m
	Length above scour level	0.00	m
	Spacing between pile	0.00	m
	Volume of pile/leg	0.78	$\mathrm{~m}^{3}$
	Volume of bulb/leg	0.00	$\mathrm{~m}^{3}$

Chimney Details					
S/No.	Item	Description	Unit		
1	Muff height	0.50	m		
2	Chimney height below ground Level	0.00	m		
	Description	Depth	Transverse	Longitudinal	Unit
3	Width of the chimney		1.20	1.20	m
a)	Step 1	0.00	1.20	1.20	m
b)	Step 2	0.00	1.20	1.20	m
c)	Step 3	0.00	1.20	1.20	m

Pile Cap Details				
S/No.	Description	Details	Unit	
1	Depth of pile cap		0.70	m
2	Side extension		0.15	m
3	Size of pile cap	L	1.20	m
		B	1.20	m
4	Lean pad		0.05	m

Self-Weight of Concrete							
S/No.	Description		Vol/Leg	Concrete Dry Density	compression weight	Concrete wet Density	
	Uplift						
$\mathbf{(\mathbf { m } ^ { \mathbf { 3 } })}$	$\mathbf{(k g / \mathbf { m } ^ { \mathbf { 3 } })}$	$\mathbf{(k g)}$	$\mathbf{(k g / \mathbf { m } ^ { \mathbf { 3 } })}$	$\mathbf{(k g)}$			
1	Muff volume	0.72	2300	1656	1300	936	
2	Volume of chimney	0.00	2300	0.0	1300	0	
3	Volume of Step 1	0.00	2300	0.0	1300	0	
4	Volume of Step 2	0.00	2300	0.0	1300	0	
5	Volume of Step 3	0.00	2300	0.0	1300	0	
6	Lean concrete	0.04	2300	92	1300	52	
7	Volume of pile cap/leg	1.01	2300	2318	1300	1310	
	Total	$\mathbf{1 . 7 7}$		$\mathbf{4 0 6 7}$		$\mathbf{2 2 9 9}$	

Weight of Superimposed soil (Depth of pile cap below GL 0.00)

S/No.	Description	Vol/Leg	Dry Density	Dry Weight	Wet Density	Wet Weight
	$\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	$\mathbf{(k g)}$	$\mathbf{(k g / \mathbf { m } ^ { 3 })}$	$\mathbf{(k g)}$		
1	Weight of soil	0.00	1835	0.0	835	0.0
2	Dead weight factor soil and concrete (for compression load only). For super imposed loads only and not on piles	1.33	-			

Load at Pile Cap Bottom				
1	Total vertical load	89894	Stub CLS $=0.150$	
2	Total uplift load	54366		
3	M_{y}	3546		
4	M_{x}	2938		

Geometry of the Pile

Geometry of the Pile

Pile No.	\mathbf{X}	\mathbf{Y}	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$	Compression	Uplift
1	0.000	0.000	0.000	0.000	89894	-54366
2	0.000	0.000	0.000	0.000	89894	-54366
3	0.000	0.000	0.000	0.000	89894	-54366

Geometry of the Pile						
Geometry of the Pile					Distribution of Loads per Pile	
Pile No.	X	Y	X^{2}	$\mathbf{Y}^{\mathbf{2}}$	Compression	Uplift
4	0.000	0.000	0.000	0.000	89894	-54366
5	0.000	0.000	0.000	0.000	89894	-54366
6	0.000	0.000	0.000	0.000	89894	-54366
7	0.000	0.000	0.000	0.000	89894	-54366
8	0.000	0.000	0.000	0.000	89894	-54366
9	0.000	0.000	0.000	0.000	89894	-54366
10	0.000	0.000	0.000	0.000	89894	-54366
11	0.000	0.000	0.000	0.000	89894	-54366
12	0.000	0.000	0.000	0.000	89894	-54366
13	0.000	0.000	0.000	0.000	89894	-54366
14	0.000	0.000	0.000	0.000	89894	-54366
15	0.000	0.000	0.000	0.000	89894	-54366
16	0.000	0.000	0.000	0.000	89894	-54366
0.00				0.00	89894	54366
OLF = Safe Load per Pile $=$					1	
					89894	54366

Description		Detail	Description
For Sandy soil			For Clayey soil
End bearing $\boldsymbol{Q}_{\boldsymbol{u}}=\boldsymbol{Q}_{\boldsymbol{f}}+\boldsymbol{Q}_{\boldsymbol{b}}$			
$Q_{b}=$	$\begin{aligned} & A_{p} \times\left(\frac{1}{2} \times D \times r \times N_{r}\right)+ \\ & A_{p} \times\left(r \times L \times N_{q}\right)+ \\ & A_{a} \times\left(\frac{1}{2} \times D_{u} \times n \times r \times N_{r}\right)+ \\ & A_{a} \times\left(r \times N_{q} \times\left(L_{1}+L_{2} \ldots L_{n}\right)\right)+ \end{aligned}$		$\begin{aligned} & A_{p} \times N_{c}+C_{p}+ \\ & A_{a} \times N_{c}+C_{a}^{\prime}+ \\ & C_{a}{ }^{\prime} \times A_{s}^{\prime}+ \\ & \text { Alpha } \times C_{a} \times A_{s} \end{aligned}$
$Q_{f}=$	$K x P_{d i} \times \tan \delta x A_{s i}$ (Due to friction) or $\frac{1}{2} x P_{i} \times D x r x K x \tan \delta x\left(L_{1}{ }^{2}+L^{2}-L_{n}{ }^{2}\right)$ (In case of under reamed pile)		
$A_{p}=$	Area of Pile	$0.64 \mathrm{~m}^{2}$	$\mathrm{C}_{\mathrm{p}}=$ Cohesion along the pile
$D=$	Diameter of Pile	$0.90 \mathrm{~m}^{2}$	$C^{\prime}{ }_{a}=$ cohesion at the Bulb
$L=$	Length of Pile	15.0 m	$C_{a}=$ Average cohesion
$D_{u}=$	Diameter of under reamed	0.0 m	
$A_{a}=$	Area of Bulb	$0.0 \mathrm{~m}^{2}$	
$\emptyset=$	Angle of internal friction		
$\delta=$	(Delta) Angle of wall friction		
$L_{n}=$	Depth of last under-ream		
$r=$	Density of soil		
$L_{1}=$	Depth of centre first under-ream		

Calculation of friction resistance for soil data received from site													
				For Sandy Soil									
Layer	Differential Depth	Pile Diameter	r	ϕ	$\boldsymbol{\delta}$	$\frac{L}{D}=$	Pressure at base of pile	Effective Depth	$P_{d} \times$ Depth	K	$\frac{\mathbf{E}}{\mathrm{kg} / \mathrm{m}^{2}}$	$\frac{\mathbf{A}_{\mathbf{s}}}{\mathrm{m}^{2}}$	$F_{s} \boldsymbol{x} A_{s i}$
	m	m	$\mathrm{kg} / \mathrm{m}^{3}$	\bigcirc	$(=\varnothing)$	20.00	$\mathrm{kg} / \mathrm{m}^{2}$						
Pile length above GL	1.20	0.90	0	0	0	1.33	0	1.20	0	0.00	0	3.39	0
2	2.00	0.90	835	0	0	3.56	1670	2.00	1670	0.00	0	5.65	0
3	2.00	0.90	835	0	0	5.78	3340	2.00	5010	1.00	0	5.65	0
4	1.00	0.90	886	25.5	25	6.89	4226	1.00	3783	1.00	1764	2.83	4988
5	1.00	0.90	886	27	27	8.00	5112	1.00	4669	1.00	2379	2.83	6726
6	1.00	0.90	886	27	27	9.11	5998	1.00	5555	1.00	2830	2.83	8003
7	1.00	0.90	886	27	27	10.22	6884	1.00	6441	1.00	3282	2.83	9279
8	1.00	0.90	886	27	27	11.33	7770	1.00	7327	1.00	3733	2.83	10556
9	1.00	0.90	886	27	27	12.44	8656	1.00	8213	1.00	4185	2.83	11832
10	1.00	0.90	886	27	27	13.56	9542	1.00	9099	1.00	4636	2.83	13108
11	1.00	0.90	886	27	27	14.67	10428	1.00	9985	1.00	5088	2.83	14385
12	1.80	0.90	886	27	27	16.67	12023	1.80	20206	1.00	10295	5.09	29109
13		0.00			0	0.00	12023	0.00	0		0	0.00	0
15.00												Total = 107987	

Calculation of End Bearing			
For End of Pile in Sandy Soil	Detail	Unit	
S/No.	Item Description	27	
1	For last layer i.e. where the pile rests	10.12	
2	Corrected N_{r}	30.00	
3	Corrected N_{q}	886	$\mathrm{~kg} / \mathrm{m}^{3}$
4	Density of soil for last layer	2567	
5	$A_{p} x \frac{1}{2} \times D \times r x N_{r}=$	233351	
6	$A_{p} x\left(r \times L x N_{q}\right)=$	235917	
7	Total end bearing capacity of pile $=Q_{b}$	107987	
8	Total friction capacity of pile $=Q_{f}$	11413	
9	Submerged weight of single pile $=W_{s}$	20192	
10	Dry weight of single pile $=W_{d}$		
11	Check for Uplift	107987	
a)	Total uplift capacity $=Q_{f}$	42953	
b)	Total uplift load to be resisted $=U-W_{s}$	2.51	
c)	Factor of safety (FoS) under uplift load $=$		
12	Check for Compression	343904	
a)	Total compression capacity $=Q_{b}+Q_{f}$	110087	
b)	Total compression load to be resisted $=$ C $+W_{d}$		
c)	Factor of safety (FoS) under compression load $=$		

Calculation of depth of Fixity

S/No.	Item Description	Detail	Unit
1	Grade of Concrete	30	$\mathrm{N} / \mathrm{mm}^{2}$
2	Grade of reinforcement steel used	460	$\mathrm{N} / \mathrm{mm}^{2}$
For Sandy Soil			
	$T=\sqrt[5]{\left(\frac{E I}{K_{1}}\right)}$, where by:		
	$\mathrm{E}=$ Modulus of elasticity of concrete		
	I = Moment of inertia of Pile		
	$K_{1}=$ From Table 2		
	$\mathrm{T}=$		
	$L_{1}=$ length of pile above ground		

	 Where: $L_{1}=e$, and $L_{f}=Z_{f}$ \qquad Free Head Piles \qquad Fixed Head Piles		
	From the figure above;		
	$L_{1} / T=\square$	0.336	
	$L_{f} / T=$	1.88	
	Length of Fixity, $L_{f}=$	670.965	cm
	Say =	6.710	m
		6.710	m
	Check for deflection		
	Transverse side thrust on pile cap	14646	
	Longitudinal side thrust on pile ca	11162	
	Number of piles	1	
	Transverse side thrust on each pile	14646	
	Longitudinal side thrust on each side	11162	
	Resultant stress transverse (ST) on single pile (Q)	18415	
	Deflection of Pile,$Q x \frac{\left(L_{f}\right)^{3}}{E I}$	0.55	cm
		5.5	mm
	Deflection Limit	50	mm
		OK	
	Ultimate Loads on single pile for Pile Design		
	Maximum moment on fixed head pile, $m x Q x \frac{\left(L_{1}+L_{f}\right)}{2}$		
	Reduction factor (m)	0.45	m
	Transverse side thrust on pile (Q_{1})	14646	kg
	Transverse moment on fixed head pile	52133	kgm
	Longitudinal side thrust on pile (Q_{2})	11162	kg
	Longitudinal moment on fixed head pile	39730	kgm

Design of Pile				
S/No.	Item Description	Detail	Unit	
1	Grade of Concrete used, $f_{c k}$	30	$\mathrm{N} / \mathrm{mm}^{2}$	
2	Grade of reinforcement steel used, $f_{y k}$	460	$\mathrm{N} / \mathrm{mm}^{2}$	
	Length of fixity	6710	mm	
	Length above ground	1200	mm	
	Diameter of Pile, D	900	mm	
	$\frac{L_{\text {eff }}}{D}$	8.79		
	Length of Pile	Short pile		
	Area of Pile	636173	mm^{2}	
	Pile Type	Free-Head		Tomlinson

S/No.	Description	Detail	Unit	Uplift	Compression
1	Length of pile up to fixity from pile top	$L_{\text {eff }}$	mm	7910	
2	Load			NC	
3	Compression		kg	89894	
4	Tension		kg	54366	
				TR NC	LG NC
5	Side thickness		kg	14646	11162
6	Moment due to side thickness		kgm	52133	39730
7	Moment due to water current		kgm	0	-
8	Total moment		kgm	52133	39730
S/No.	Description	Detail	Unit	Uplift with Bending	Compression with Bending
1	Grade of Concrete used, $f_{c k}$	$f_{c k}$	$\mathrm{N} / \mathrm{mm}^{2}$	30	30
2	Grade of reinforcement steel used, $f_{y k}$	$f_{y k}$	$\mathrm{N} / \mathrm{mm}^{2}$	460	460
3	Concrete cover	C_{c}	mm	50	50
4	Uplift/compressive load	P_{u}	N	533330	881864
5	Transverse moment		Nmm	511425492	511425492
6	Longitudinal moment		Nmm	389755839	389755839
7	Pile area	A_{g}	mm^{2}	636173	636173
8	Diameter of bars	dia	mm	25	25
9	Number of bars		No.	17	17
10	Steel area	A_{s}	mm^{2}	8345	8345
11	Area of concrete, $A_{c}=A_{g}-A_{s}$	A_{c}	mm^{2}	627828	627828
12	$P_{t}=\frac{100 \times A_{s}}{\text { CHW Area }}$			1.312	1.312
13	Check for 0.4\% minimum steel			OK	

Biaxial bending capacity of Pile (Refer to PROKON Design \& analysis)					
S/No.	Description		Required rebar		Provided rebar
1	CASE1: Compression with Bending	mm ${ }^{2}$	2893		8345
	Factor of Safety: $\text { FoS }=\frac{\text { Provided Rebar }}{\text { Required Rebar }}=\left(\frac{8345}{2893}\right)$	FoS	2.88		-
2	CASE2: Uplift with Bending	mm^{2}	6670		8345
	Factor of Safety: $\text { FoS }=\frac{\text { Provided Rebar }}{\text { Required Rebar }}=\left(\frac{8345}{6670}\right)$	FoS	1.25		-
Design of Pile Cap					
$\begin{aligned} & f_{y k}=460 \mathrm{MPa} \\ & f_{c k}=30 \mathrm{MPa} \end{aligned}$		$\frac{d^{\prime}}{D}=0.114$			$\begin{aligned} & =1200 \mathrm{~mm} \\ & =1200 \mathrm{~mm} \end{aligned}$
Orthogonal Forces on Pile Cap (kN)					
S/No.	Description	Case 1	Case 2	Case 3	Case 4
1	Compression (+) / Tension (-)	828.52	-555.69	828.52	820.01
	Longitudinal	109.46	73.41	109.46	108.75
	Transverse	141.12	99.19	141.12	143.63
	Lever Arm	2.225	2.225	2.225	2.225
	Moment Longitudinal (kNm)	243.5485	163.33725	243.5485	241.96875
	Moment Transverse (kNm)	313.992	220.69775	313.992	319.57675
	Moment Uniaxial (kNm)	557.5405	384.035	557.5405	561.5455
	Moment Uniaxial (Nmm)	557540500	384035000	557540500	561545500
	$\frac{P_{u}}{\left(f_{c k} \times b \times d\right)}$	0.01918	0.01286	0.01918	0.01898
	Minimum steel (\%)	0.4	0.4	0.4	0.4
	Diameter of bars	25/10	$25 / 10$	25/10	$25 / 10$
	Number of bars	17/16	17/16	17/16	17/16
	Area of steel provided	9601	9601	9601	9601
	$P_{t}=\frac{100 \times A_{s t}}{(b \times d)}$	0.67	0.67	0.67	0.67
	Check for minimum steel	OK	OK	OK	OK
	$P_{t} / f_{c k}$	0.0223	0.0223	0.0223	
	From Chart; $\frac{M_{u}}{f_{\text {ck }} \times b \times d^{2}}$	0.039	0.028	0.039	0.039
	Hence, M_{u} capacity (Nmm)	2021760000	1451520000	2021760000	2021760000
	$\begin{aligned} & \text { Factor of Safety (FoS) } \\ & =\frac{M_{u} \text { capacity }(\mathrm{Nmm})}{\text { Moment Uniaxial (Nmm) }} \end{aligned}$	3.626	3.780	3.626	3.60

STUB DESIGN FOR AAP 104/5				
S/No.	Description	Unit	Calculations/Equations	Results/Remarks
1	Tower Loads (Ultimate) for maximum body extension			
a)	Compressive weight	kg		86421
	Compressive Load	kN	$F=m g=\left[\frac{(86421 \times 9.81)}{1000}\right]$	847.79
	Side thrust (transversal)	kN		31.62
	Side thrust (Longitudinal)	kN		20.77
b)	Tensile weight	kg		58007
	Tensile Load	kN	$F=m g=\left[\frac{(58007 \times 9.81)}{1000}\right]$	568.05
	Side thrust (transversal)	kN		21.62
	Side thrust (Longitudinal)	kN		20.77
2	Stub Details			
	Stub arrangement	No.		1 single angle
	Stub material			High Tensile (HT)
	Stub section	mm		$125 \times 125 \times 12$
	Stub depth inside concrete	mm		2243
3	Cleat Details			
	Cleat arrangement	No.		2 (back to back)
	Cleat material			HT
	Cleat section	mm		$90 \times 90 \times 7$
	Cleat 1 length	mm	L_{1}	125
	Cleat 1 number	No.		3
	Cleat 2 length	mm	L_{2}	125
	Cleat 2 number	No.		3
4	Bolt Details			
	Diameter of bolts	mm		16
	No. of bolts	No.		3
5	Concrete Details			
	Grade of concrete, $f_{c k}$	$\mathrm{N} / \mathrm{mm}^{2}$	$f_{c k}$	25
6	Stub Area Check as per ASCE 52			
	Stub flange width	mm		125
	Stub thickness	mm		12
	Stub material, $f_{y k}$	$\mathrm{kg} / \mathrm{cm}^{2}$		3620
	Stub area provided	cm^{2}		28.912
	Compressive weight	kg	P	86421
	Transversal side thickness weight	kg		3223
	Longitudinal side thickness weight	kg		2117
	Resistance side thickness weight	kg	V	3856
	Stub area required	cm^{2}		25.29, OK
	Tensile weight	kg	P	58027
	Transversal side thickness weight	kg		3223
	Longitudinal side thickness weight	kg		2117
	Resistance side thickness weight	kg	V	3856
	Stub area required	cm^{2}		17.45, OK
7	Check for stub length in compression			

	Depth of stub in concrete	cm	$\mathrm{D}_{\text {stub (concrete) }}$	214.8
	Punching shear stress for compression	$\mathrm{N} / \mathrm{mm}^{2}$	$\left[0.35 x \sqrt{f_{c k}}\right]=[0.35 x \sqrt{25}]$	1.75
		$\mathrm{kg} / \mathrm{cm}^{2}$	$V_{\text {shear }(\text { comp })}=\left[0.35 x \sqrt{f_{c k}}\right]=\left[0.35 x \sqrt{\left(\frac{25}{9.81 x(0.1)^{2}}\right)}\right]$	17.838
	Perimeter for shear	cm	$\begin{aligned} & \mathrm{P}=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+\mathrm{EF}+\mathrm{FG}+\mathrm{GH}+\mathrm{HI}+\mathrm{IJ}+\mathrm{JA} \\ & \mathrm{P}=125+90+12+90+70+90+12+90+125+165 \end{aligned}$	86.9
	Therefore, punching shear strength	kg	$\begin{aligned} & V_{\text {shear }(\text { strength })}=\left(\mathrm{D}_{\text {stub }(\text { conc })} \times P \times V_{\text {shear }(\text { comp })}\right)>\text { Compressive wt } \\ & \text { Compressive weight }=96836 \mathrm{~kg} \\ & \Rightarrow V_{\text {shear }(\text { strength })}=214.8 \times 86.9 \times 17.838 \\ & \Rightarrow V_{\text {shear }(\text { strength })}=332967 \mathrm{~kg}>86421 \mathrm{~kg} \end{aligned}$	332967
	Factor of Safety, FoS		$F o S=\frac{332967 \mathrm{~kg}}{86421 \mathrm{~kg}}=3.86>1$, Hence, SAFE	3.86
8	Check for Stub Length in Uplift			
	Punching shear stress for uplift	$\mathrm{kg} / \mathrm{cm}^{2}$	$V_{\text {Shear (uplift) }}=\left[0.28 x \sqrt{f_{c k}}\right]=[0.28 x \sqrt{25}]$	14.271
	Therefore, punching shear strength	kg	$\begin{aligned} & V_{\text {shear (strength })}=\left(\mathrm{D}_{\text {stub }(\text { conc })} \times P \times V_{\text {shear }(\text { uplift })}\right)>\text { Tensile wt } \\ & \text { Tensile weight }=58027 \mathrm{~kg} \\ & \Rightarrow V_{\text {shear }(\text { strength })}=214.8 \times 86.9 \times 14.271 \\ & \Rightarrow V_{\text {shear }(\text { strength })}=266385 \mathrm{~kg}>58027 \mathrm{~kg} \end{aligned}$	266385
	Factor of Safety, FoS		$F o S=\frac{266385 \mathrm{~kg}}{58027 \mathrm{~kg}}=4.60>1$, Hence, SAFE	4.60

S/No.	Description	Unit	Calculations/Equations	Results/Remarks
	CLEAT DESIGN AS PER ASCE 52 As per appendix 8 of the Technical Specification, Schedule 4: The design properties of the soil and concrete are:			
1	Ultimate Compression for Cleat design (50\% Load)			
	Ultimate compression weight	kg	Weight	43211
	Ultimate compression load	kN	$F=m g=\left[\frac{(43211 \times 9.81)}{1000}\right]$	423.9
2	Concrete grade	$\mathrm{N} / \mathrm{mm}^{2}$	$f_{c k}$	25
		$\mathrm{N} / \mathrm{mm}^{2}$	$f_{c k}{ }^{\prime}=\left(0.8 \times f_{c k}\right)=0.8 \times 25$	20
		kg/cm ${ }^{2}$	$f_{c k}{ }^{\prime}=\left(0.8 \times f_{c k}\right)=\left[0.8 x \frac{25}{9.81 \times(0.1)^{2}}\right]$	203.9
3	Cleat material	kg/cm ${ }^{2}$	$f_{y k}$	3620
	Cleat flange width	mm	w	90
	Cleat thickness	mm	t	7
	Root radius of cleat	mm	r	10.0
	$X=t x \sqrt{\left[\frac{f_{y k}}{1.19 f_{c k}^{\prime}}\right]}$	cm	$X=\left\{t x \sqrt{\left[\frac{f_{y k}}{1.19 f_{c k}^{\prime}}\right]}\right\}=\left\{\left(7 \times 10^{-1}\right) x \sqrt{\left[\frac{3620}{1.19 \times 203.9}\right]}\right\}$	2.704
4	Cleat 1 length	cm		12.5
	Effective width	cm		3.0519
	Force transferred by Cleat 1	kg		9255
	Number of Cleat 1	No.		3
	Cleat 1 capacity	kg		27766
5	Cleat 2 length	cm		12.5
	Effective width	cm		3.0519
	Force transferred by Cleat 2	kg		9255
	Number of Cleat 2	No.		3
	Cleat 2 capacity	kg		27766
6	Total capacity of both cleats 1 \& 2	kg	Total capacity in weight $=27766+27766$	55532
		kN	$F=m g=\left[\frac{(55532 \times 9.81)}{1000}\right]=1193.80 \mathrm{kN}$, hence $O \mathrm{~K}$	544.77

S/No.	Description	Unit	Calculations/Equations	Results/Remarks
	BOLT DESIGN As per appendix 8 of the Technical Specification, Schedule 4: The design properties of the soil and concrete are:			
1	Compressive force for bolt design (50\% load)	kg		43211
2	Tension force for bolt design (50\% load)	kg		29004
3	Area of one bolt	cm^{2}		2.01
	Bolt shear stress	$\mathrm{kg} / \mathrm{cm}^{2}$		3671
	Bolt shear strength	kg	B_{1}	88541
4	Stub bearing stress	kg/cm ${ }^{2}$		7189
	Bolt bearing stress	$\mathrm{kg} / \mathrm{cm}^{2}$		7189
	Stub thickness	mm		12
	Stub bearing strength	kg	B_{2}	82814
5	Cleat bearing stress	$\mathrm{kg} / \mathrm{cm}^{2}$		7189
	Bolt bearing stress	$\mathrm{kg} / \mathrm{cm}^{2}$		7189
	Cleat thickness	mm		7
	Cleat bearing strength	kg	B_{3}	96617
6	Bolt strength	kg	Min $\left(B_{1}, B_{2}, B_{3}\right)=82814 \mathrm{~kg}$, Hence, OK	82814

Circular column design

Circular column design by PROKON. (CirCol Ver W3.0.06-12 May 2016)
Design code : BS8110-1997

Input tables

General design parameters and loads:

Load	Description	Ultimate Limit State Design Loads				
		P (kN)	Mx top (kNm)	My top (kNm)	Mx bot (kNm)	My bot (kNm)
1	COMP	828.52			511.25	389.62
2	UPLIFT	-555.69			511.25	389.62

\varnothing	(mm)	900
$\mathrm{~d}^{\prime}$	(mm)	72.5
Lo	(m)	7.91
fcu	(MPa)	30
fy	(MPa)	460

General design parameters:

Given:
$\mathrm{d}=900 \mathrm{~mm}$
$\mathrm{d}^{\prime}=72 \mathrm{~mm}$
$\mathrm{Lo}=7.910 \mathrm{~m}$
$\mathrm{fcu}=30 \mathrm{MPa}$
$\mathrm{fy}=460 \mathrm{MPa}$

Therefore:

$$
\begin{aligned}
A_{c} & =\frac{\pi \cdot d^{2}}{4} \\
& =\frac{\pi \times 900^{2}}{4} \\
& =636.2 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
d_{i a x^{\prime}} & =d_{i a}-d^{\prime} \\
& =900-72.5 \\
& =827.500 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
d_{i a y^{\prime}} & =d_{i a}-d^{\prime} \\
& =900-72.5 \\
& =827.500 \mathrm{~mm}
\end{aligned}
$$

Assumptions:
(1) The general conditions of clause 3.8.1 are applicable.
(2) The section is symmetrically reinforced.
(3) The specified design axial loads include the self-weight of the column.
(4) The design axial loads are taken constant over the height of the column.

Design approach:

The column is designed using the following procedure:
(1) The column design charts are constructed.
(2) The design axis and design ultimate moment is determined .
(3) The steel required for the design axial force and moment is read from the relevant design chart.
(4) The area steel perpendicular to the design axis is read from the relevant design chart.
(5) The procedure is repeated for each load case.
(6) The critical load case is identified as the case yielding the largest steel area about the design axis.

Through inspection:
Load case 2 (UPLIFT) is critical.

Check column slenderness:

End fixity and bracing for bending about the $\mathrm{X}-\mathrm{X}$ axis:
The column is braced.
$\therefore \beta \mathrm{x}=0.80$
End fixity and bracing for bending about the Y-Y axis:
The column is braced.
$\therefore B y=0.80$
Effective column height:

$$
\begin{aligned}
l_{e x} & =\beta_{X} \cdot L_{o} \\
& =.8 \times 7.91 \\
& =6.328 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
l_{e y} & =\beta_{y} \cdot L_{o} \\
& =.8 \times 7.91 \\
& =6.328 \mathrm{~m}
\end{aligned}
$$

Column slenderness about both axes:

$$
\begin{aligned}
\lambda_{x} & =\frac{l_{e x}}{d_{i a}} \\
& =\frac{6.328}{.9} \\
& =7.031
\end{aligned}
$$

O) O O (0)	Job Number			Sheet
Software Consultants (Pty) Ltd	Client			
E-Mail : mail@prokon.com	Calcs by	Checked by	Date	

$$
\begin{aligned}
\lambda_{y} & =\frac{l_{e y}}{d_{i a}} \\
& =\frac{6.328}{.9} \\
& =7.031
\end{aligned}
$$

Minimum Moments for Design:

Check for mininum eccentricity:
For bi-axial bending, it is only necessary to ensure that the eccentricity exceeds the minimum about one axis at a time.

For the worst effect, apply the minimum eccentricity about the minor axis:
Use emin $=20 \mathrm{~mm}$

$$
\begin{aligned}
M_{\min } & =e_{\text {min }} \cdot N \\
& =.02 \times-555.69 \\
& =-11.1138 \mathrm{kNm}
\end{aligned}
$$

Check if the column is slender:
$\lambda x=7.0<15$
$\lambda y=7.0<15$
\therefore The column is short.

Initial moments:

The initial end moments about the $\mathrm{X}-\mathrm{X}$ axis:
$\mathrm{M} 1=$ Smaller initial end moment $=0.0 \mathrm{kNm}$
$\mathrm{M} 2=$ Larger initial end moment $=511.2 \mathrm{kNm}$
The initial moment near mid-height of the column :

$$
\begin{aligned}
M_{i} & =-0.4 \cdot M_{1}+0.6 \cdot M_{2} \\
& =-0.4 \times 0+0.6 \times 511.25 \\
& =306.750 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
M_{i 2} & =0.4 \cdot M_{2} \\
& =0.4 \times 511.25 \\
& =204.500 \mathrm{kNm}
\end{aligned}
$$

Calcs by	Checked by	Date

$\therefore \mathrm{Mi} \geq 0.4 \mathrm{M} 2=511.2 \mathrm{kNm}$
The initial end moments about the $\mathrm{Y}-\mathrm{Y}$ axis:
M1 $=$ Smaller initial end moment $=0.0 \mathrm{kNm}$
M2 = Larger initial end moment $=389.6 \mathrm{kNm}$
The initial moment near mid-height of the column :

$$
\begin{aligned}
M_{i} & =-0.4 \cdot M_{1}+0.6 \cdot M_{2} \\
& =-0.4 \times 0+0.6 \times 389.62 \\
& =233.772 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
M_{i 2} & =0.4 \cdot M_{2} \\
& =0.4 \times 389.62 \\
& =155.848 \mathrm{kNm}
\end{aligned}
$$

$\therefore \mathrm{Mi} \geq 0.4 \mathrm{M} 2=389.6 \mathrm{kNm}$

Design ultimate load and moment:

Design axial load:
$\mathrm{P}_{\mathrm{u}}=-555.7 \mathrm{kN}$
Moment distribution along the height of the column for bending about the $\mathrm{X}-\mathrm{X}$:
At the top, $\mathrm{Mx}=0.0 \mathrm{kNm}$
Near mid-height, $\mathrm{Mx}=0.0 \mathrm{kNm}$
At the bottom, $\mathrm{Mx}=0.0 \mathrm{kNm}$

Moments about $\mathrm{X}-\mathrm{X}$ axis(kNm)

Mxbot=511.2 kNm

Initial

Design

Moment distribution along the height of the column for bending about the $\mathrm{Y}-\mathrm{Y}$:
At the top, $\mathrm{My}=0.0 \mathrm{kNm}$
Near mid-height, $\mathrm{My}=0.0 \mathrm{kNm}$
At the bottom, $\mathrm{My}=0.0 \mathrm{kNm}$

Design of column section for ULS:

Through inspection:
The critical section lies at the bottom end of the column.

The column is bi-axially bent: the moments are therefore added vectorially to obtain the final design moment:

$$
\begin{aligned}
M^{\prime} & =\sqrt{M_{x}^{2}+M_{y}^{2}} \\
& =\sqrt{511.25^{2}+389.62^{2}} \\
& =642.791
\end{aligned}
$$

Design axial load:
$P_{u}=-555.7$

Software Consultants (Pty) Ltd Internet: http://www.prokon.com E-Mail : mail@prokon.com	Job Num			Sheet
	Client			
	Calcs by	Checked by	Date	

For bending about the design axis:

From the design chart, $\mathrm{Asc}=6670=1.05 \%$

Design chart for bending about any axis:

Bending Moment (kNm)

	Job Number			Sheet
	Job Title			
Software Consultants (Pty) Ltd	Client			
E-Mail : mail@prokon.com	Calcs by	Checked by	Date	

Summary of design calculations:

Design results for all load cases:

Load case	Axis	N (kN)	M1 (kNm)	M2 (kNm)	$\mathrm{Mi}(\mathrm{kNm})$	Madd (kNm)	Design	M (kNm)	M' (kNm)	Asc (mm^{2})
	X-X		0.0	511.2	511.2	0.0	X-X	511.2		
1	Y-Y	828.5	0.0	389.6	389.6	0.0	Bottom	389.6	642.8	2893 (0.45\%)
2	X-X	-555.7	0.0	511.2	511.2	0.0	X-X	511.2	642.8	6670 (1.05\%)
	Y-Y		0.0	389.6	389.6	0.0	Bottom	389.6		

Load case 2 (UPLIFT) is critical.

FOUNDATION DESIGN CALCULATION FOR AP 108/20

Ultimate Tower Reactions at Base for +12 MBE

Load Case	$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	Load Case No.	Nature of Stub force	Inclined forces on foundation (kN)		
				Compressive/ Uplift	Long side thrust	Transversal side thrust
17	41S	C1- TW NC NC $\mathrm{V}_{\text {max }}$	Compressive	886.67	0.70	19.011
18	43S	C1- TW NC NC $\mathrm{V}_{\text {min }}$	Uplift	594.45	0.06	19.53
19	44S	C2- BWC MCR Br-V min	Compressive	280.26	16.55	31.51
20	42S	C2- BWC BCL Br-V ${ }_{\text {min }}$	Uplift	133.57	21.56	23.14
				Inclined forces on foundation (kg)		
Case	No.	Load Case No.	Stub force	Compressive/ Uplift	Long side thrust	Transversal side thrust
17	41S	C1- TW NC NC $\mathrm{V}_{\text {max }}$	Compressive	90414	72	1939
18	43S	C1- TW NC NC $\mathrm{V}_{\text {min }}$	Uplift	60617	6	1991
19	44S	C2- BWC MCR Br- $\mathrm{V}_{\text {min }}$	Compressive	28579	1688	3213
20	42S	C2- BWC BCL Br-V $\mathrm{V}_{\text {min }}$	Uplift	13621	2198	2360

Notes: Above foundation forces are ultimate.

SOIL PROPERTIES FOR FOUNDATION DESIGN

Please refer schedule4: Design-properties of soil and concrete of technical specification.

S/No.	Soil Type	Poor Soil
1	Assumed mass of Earth for foundations, $\gamma_{s}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1600
2	Assumed mass of rock for foundations, $\gamma_{r}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	-
3	Assumed mass of concrete for foundations, $\gamma_{c}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	2300
4	Assumed ultimate bearing capacity for foundations under specified maximum ultimate loading, including factor of safety:	
(a)	$\mathrm{t} / \mathrm{m}^{2}$	30
(b)	$\mathrm{kN} / \mathrm{m}^{2}$	294.19
5	Ultimate shear stress in rock, τ	-
(a)	$\mathrm{t} / \mathrm{m}^{2}$	-
(b)	$\mathrm{kN} / \mathrm{m}^{2}$	30°
6	Assumed angle to vertical of frustum of earth resisting uplift (angle of Repose).	25°
7	Assumed angle to vertical of frustum of earth resisting uplift (angle of repose) considered in foundation design, \varnothing.	

Client: Samuel Acidri/KPTL			FOUNDATION DESIGN CALCULATION FOR AP 108/20	
S/No.	Description	Unit	Calculations/Equations	Results/Remarks
1	Min. back-to-back distance (TR)	m		11.015
	Min. back-to-back distance (LG)	m		9.868
2	Working point			At top of footing
3	Leg-angle (Transverse), Ø	Degrees	θ_{T}	8.825
	Leg-angle (Longitudinal), Ø	Degrees	θ_{L}	7.496
	True Angle	Degrees	θ	8.148
	Length factor		$1 / \cos ^{2} \theta$	1.02
	Chimney/Column			Inclined
4	Maximum Loads as per FAT Test			
a)	P-compression, $P_{\text {comp }}$	kN	$P_{\text {comp }}$	886.67
b)	P-tension, $P_{\text {tension }}$	kN	$P_{\text {tension }}$	594.45
c)	Shear -transversal, Tr	kN	Tr	33.27
c)	Shear -longitudinal, Lg	kN	Lg	27.88
5	Footing type			Double slab
6	Footing Dimensions			
a)	Footing depth, H	m	H	3.5
b)	Footing dimensions, Lx W x H	m	$L \times W \times H$	$2.64 \times 2.64 \times 0.35$
c)	Step, L x W x H	m	$L \times W \times H$	$1.2 \times 1.2 \times 0.25$
d)	Footing base, B	m	B	2.64
e)	Lean pad height, P	m	P	0.05
7	Column/Chimney Dimensions			
	Size, W	m	W	0.55×0.55
	Muff, M	mm	M	800
	Chimney height, H_{1}	mm	H_{1}	2850
	Base thickness, D	mm	D	350
	Step depth, D_{1}	mm	D_{1}	250
	Step width, B_{1}	mm	B_{1}	1200
	Working point height, Wp	mm	W_{p}	600
8	Footing Reinforcement			
	Bottom	No. -Dia		$\begin{gathered} 15 \text { No, Dia } 14 @ \\ 180 \mathrm{c} / \mathrm{c} / \end{gathered}$
	Top -step	No. -Dia		$\begin{gathered} 6 \text { No, Dia } 14 @ \\ 220 \text { c/c } \end{gathered}$
	Top -base	No. -Dia		$\begin{gathered} 10 \text { No, Dia } 14 @ \\ 280 \mathrm{c} / \mathrm{c} \end{gathered}$
9	Column/Chimney reinforcement			
	Main internal rebars	No. -Dia		8 No, Dia 16
	Main corner rebars	No. -Dia		4 No, Dia 20
	Links	Dia- Spc		Dia 8 @ 225 c/c
10	Material Data			
	Concrete density in RCC and PCC (dry), γ_{c}	$\mathrm{kg} / \mathrm{m}^{3}$	γ_{c}	2300
	Concrete cover to bottom surface, c	mm	c	100
	Concrete cover to top and side surfaces, c^{\prime}	mm	c^{\prime}	50
	Characteristic concrete strength, $f_{c k}$	MPa	$f_{c k}$	C25
	Characteristic steel strength, $f_{y k}$	MPa	$f_{y k}$	$f_{y k} 500$
11	Data for Checks (Soil cone from edge)			
	Height of soil cone, H_{b}	m	H_{b}	2.8
	Effective soil weight (soil cone + excavation pit weights)	kN	$W_{s}=$ soil cone weight + excavation pit weight	687.92
	Effective concrete weight, W_{c}	kN	W_{c}	30.593
	-in muff		$\gamma_{c} \times M \times W^{2}=\left[\left(\frac{2300 \times 9.81}{1000}\right) \times 0.8 \times 0.55^{2}\right]$	5.460
	-in soil		$\begin{aligned} & {\left[\left(H_{1} \times W^{2}\right)+\left(\left(D \times B^{2}\right)+\left(D_{1} \times B_{1}{ }^{2}\right)\right)\right] x\left(\gamma_{c}-\gamma_{s}\right)} \\ & \left(H_{1} \times W^{2}\right)=\left(2.85 \times 0.55^{2}\right)=0.862125 \\ & \left(D \times B^{2}\right)=\left(0.35 \times 2.64^{2}\right)=2.43936 \\ & \left(D_{1} \times B_{1}{ }^{2}\right)=\left(0.25 \times 1.20^{2}\right)=0.36 \\ & \left(\gamma_{c}-\gamma_{s}\right)=(22.563-15.696)=6.867 \\ & \gamma_{c}=\left(\frac{2300 \times 9.81}{1000}\right)=22.563 \& \gamma_{s}=\left(\frac{1600 \times 9.81}{1000}\right)=15.696 \\ & \Rightarrow[0.862125+(2.43936+0.36)] \times 6.867 \end{aligned}$	25.143

[^0]: Appendix A. 1 - Site Location Maps

[^1]: Appendix E - Research Time Schedule

[^2]: B/B WIDTH AT BTB + O M LE (MINIMUM TOWER BASE) FOR TRANSVERSE FACE $=11015 \mathrm{~mm}$ B / B WIDTH AT BTB +0 M LE (MINIMUM TOWER BASE) FOR LONGITUDINAL FACE $=9868 \mathrm{~mm}$

