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ABSTRACT

Insufficient knowledge of physical models and difficulty in fitting statistical models impair the choice of models to regulate

residual chlorine in water distribution. This paper compared the performance of physical and statistical models in predicting

residual chlorine concentrations in drinking water distribution. Drinking water was sampled from the downstream 128 water

points water pipeline. Online chlorine concentrations were determined at water draw-off points. EPANET, the physical

model, was used because of its efficiency in tracking dissolved chemicals. Statistical models used were regression, decision

tree, random forest and artificial neural network. In the whole distribution network, the artificial neural network performed

at R2 of 94%, multi-linear regression (62%), random forest (55%), decision tree (41%), and EPANET (24%). However, EPANET

yielded improved performance with R2 above 70% when separately applied to individual sub-distribution networks; hence, is

recommended for secondary chlorination in small distribution networks. For modelling large distribution networks, statistical

models, especially an artificial neural network, are recommended. However, such cases still need support from confirmatory

systems of interpretable parametric or hydraulic models that can achieve good performance with R2� 80%. Water utilities

can use these results to deploy model(s) for managing residual chlorine within safe limits of residual chlorine concentration

in water distribution practice.
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HIGHLIGHTS

• Drinking water was sampled from 128 points downstream from a water treatment plant.

• R2 for artificial neural network: 0.94, random forest: 0.44 and EPANET: 0.24.

• RMSE for EPANET was 0.58 mg/l and for statistical models ranged from 0.04 to 0.18 mg/l.

• An artificial neural network is recommended for predicting residual chlorine.

• Interpretable parametric models should supplement the use of an artificial neural network.

1. INTRODUCTION

Chlorine decay is the decrease in free residual chlorine concentration in drinking water as it passes from a water
treatment plant to downstream points of the drinking water distribution system (World Health Organization
2017). Chlorine is the most common disinfectant in drinking water treatment because of its efficacy against patho-

genic micro-organisms, low cost, ease of application, monitoring and extended disinfectant durability compared
with other disinfectants (Hyunjun & Sanghyun 2017). In 2014, the World Health Organization recommended a
minimum residual chlorine concentration of 0.2–5 mg/l at water consumption points to safeguard public health

from microbial secondary contamination in the treated water supply (World Health Organization 2017). During
water-borne disease outbreaks and emergencies, minimum residual chlorine is increased to 1.0 mg/l at tap stands
and 2.0 mg/l at water delivery trucks (Rajasingham et al. 2020). Residual chlorine rotects against subsidiary
pathogen intrusion in drinking water distribution networks (Kim et al. 2014).

Physical (process-driven or knowledge-driven) models (Bowden et al. 2019; Gibbs et al. 2019; Tiruneh et al.
2019a; Vuta & Dumitran 2019) and statistical (data-driven) models (Bowden et al. 2019; Gibbs et al. 2019;
Tiruneh et al. 2019a) are used to simulate free residual chlorine concentrations in drinking water distribution
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systems. Physical models use underlying physical processes that transform inputs into outputs (Louppe 2014).
The inputs in this case would be residual chlorine decay parameters and output as final residual chlorine concen-
tration at water consumption draw-off points. However, the current knowledge of chemical kinetic reactions as

the commonest physical model for residual chlorine decay in water is insufficient (Hyunjun & Sanghyun 2017;
Bowden et al. 2019). Numerical methods are used to solve the differential equations that represent the physical
laws that govern chemical reactions of residual chlorine decay in water (Vuta & Dumitran 2019). However, cal-
culus and algebra are not as reliable as process models (Louppe 2014) because the underlying relationships of

residual chlorine decay in treated water depend on several unknown and complex factors (Karadirek et al.
2015; Ricca et al. 2019). Consequently, process models take time to solve (Louppe 2014). Besides, simplifications
and assumptions on model structure, one-dimensional flow are limitations (Karadirek et al. 2015). Simplifications

and assumptions in physical models may be inaccurate, rendering process models unsuitable. Physical models are
also deterministic(Steurer et al. 2019). This suggests that they are free from random variations in water quality
modelling. EPANET hydraulic model, because of its popularity (Torretta et al. 2019), availability (Environmental

Protection Agency 2018) and Lagrangian tracking of water chemical constituents (Kumar et al. 2015; Ricca et al.
2019), is the process model that is most commonly used to model water quality including residual chlorine decay
(Karadirek et al. 2015; Tiruneh et al. 2019a).

In contrast, statistical models are data-driven (Loucks & van Beek 2017). Statistical models that have been used
for residual chlorine decay modelling include linear regression models (Kim et al. 2014; Loucks & van Beek
2017; Oladipupo et al. 2019), multi-layer perceptron artificial neural networks (Gibbs et al. 2019; Ricca et al.
2019), GRNN (Generalized Regression Neural Network) models (Hyunjun & Sanghyun 2017), MLR (multiple

linear regression) models (Hyunjun & Sanghyun 2017; Azad et al. 2019), artificial neural networks (Loucks &
van Beek 2017; Azad et al. 2019; Oladipupo et al. 2019), time series neuro-fuzzy and adaptive neuro-fuzzy infer-
ence systems (ANFIS) networks and directed graph tree-based models like decision trees and random forests

(Louppe 2014). However, statistical models are prone to underfitting or overfitting in prediction models
(Bowden et al. 2019). This causes a model error by deviating from ground truths.

Therefore, regulating residual chlorine within this safe limit (0.2–5.0 mg/l) is still a big challenge (Vuta &

Dumitran 2019; Wu & Dorea 2020). Despite such modelling challenges in determining water quality, we need
models to use in predicting water quality. This is especially necessary and mandatory in long water distribution
pipelines to guarantee public health and high environmental performance, as argued by (Torretta et al. 2019).
Therefore, there is a need to compare the performance of physical and statistical models in predicting residual

chlorine decay in water distribution systems like the 90 Km-long gravity drinking water distribution system in
this study. Accordingly, the aim of this paper was to compare how physical and statistical models perform in pre-
dicting residual chlorine in drinking water distribution systems. Water utilities can use these results to choose and

deploy model(s) for managing residual chlorine concentrations to remain within safe limits throughout the water
distribution network.

2. METHODS AND MATERIALS

2.1. Study area

This research was conducted on the Lirima Gravity Flow Scheme located in Manafwa and Namisinde districts in
the Mount Elgon region in Eastern Uganda. This gravity scheme is owned and operated by the National Water
and Sewerage Corporation (NWSC) of Uganda which is a government parastatal. Figure 1 shows the water trans-

mission main from the NWSC Lirima water treatment plant.
The GPS (Geographical Positioning System) coordinates of the water source and treatment plant of this gravity

flow scheme is 36 N (Latitude), 0657122 (Northing), 0098196 (Easting) at an altitude of 1,812 m above sea level.

The scheme starts just inside Uganda at the Uganda-Kenya border and it traverses 90 km in the hinterland in the
study area.

2.2. Data sample size and data collection strategy

Morning and afternoon runs were conducted each day on particular distribution mains. On each run, data wer-

ecollected at sampling points at approximate intervals of 800–1,000 m. The strategy for this spacing interval was
to ensure notable observations in residual chlorine concentrations in light of the low initial chlorine dosage at the
water treatment plant and how fast it may decay in this system. This water sampling interval was based on the low

initial chlorine dose of 0.73–1.00 mg/l at the water treatment plant to minimize chlorination cost and also
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minimize the formation of carcinogenic DBPs (disinfection by-products) that are associated with high chlorine
dosage. Data collection was replicated on different days to simulate variations in study data. Replication of
data on different days was also a strategy to increase the sample size of the study data. Three to four data

points per sampling point were collected in the dry months of February–March 2021 totalling overall 128
datasets.

2.3. Data collection instruments and testing procedure

Water was sampled at clear water reservoir and break-pressure tank outlets, wash-outs and nearest functional

yard taps that were on direct supply lines from water distribution and transmission mains. The yard water taps
from which water was sampled were those that were very close to distribution mains within off-sets of less
than 5 m, as shown in Figure 2. Horizontal distances and altitudes of these physical infrastructure components
i.e. clear water reservoirs, break-pressure tank outlets, wash-outs and nearest functional yard taps were captured

using GARMIN GPSMAP64s hand-held GPI (Geographic positioning instrument). Internal pipe diameters (pipe
bores) were measured using steel tape measures directly at break-pressure outlets when the outlets were empty.
The GPS coordinates were used to track the hydraulic paths and gradients of water transmission and distribution

pipelines for hydraulic modelling in EPANET. It was assumed that water quality parameters at yard taps close to
distribution networks would not have varied significantly from the water in the nearby distribution lines. There-
fore, water in yard taps was considered to be practically representative of water quality parameter values. Online

tests of residual chlorine, turbidity, temperature and electrical conductivity were done on water samples drawn
from each water sample point mentioned above. Standard 1-litre bottles were used to draw water from break-
pressure outlets, wash-outs and yard taps. Within seconds of sampling water in standard 1-litre bottles, a multi-

functional Lovibond MD 600 digital metre was used to measure water quality parameters of residual chlorine in

Figure 1 | Location of the Lirima gravity water distribution scheme in eastern Uganda.
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the range of 0–6 mg/l and turbidity (NTU), A pH and conductivity 901 digital metre was used to measure online
temperature (°C), pH and electrical conductivity (μS/cm). Test results of these water quality parameters were

recorded in pre-prepared notebooks designed to record water qualities at geo-referenced positions in the water
distribution system.

2.4. Model performance evaluation

For model evaluation, this study applied R2, RMSE (root mean squared error) and MAE. The RMSE is a mono-
tonic square root transformation of MSE (mean squared error) as shown in Equation (1).

RMSE ¼ p
1=N

XN

n¼1

( po� pp)2 (1)

where N¼ sample size; po¼ observed outcome; pp¼ predicted outcome.
Finally, the models were ranked based on interpretability, penalty and reward metrics.

2.5. Data analysis

EPANET 2.0 was used to develop a hydrologic model from the GPS coordinates picked from a water treatment

plant, water outlets of break-pressure tanks, online wash-outs and other sections of transmission and distribution
lines. EPANET 2.0 was further used to develop a process model of residual chlorine decay from upstream to
downstream points within water transmission and distribution lines The influence of both water quality and
water system parameters was investigated using triangulated methods of (1) decision tree analysis importance

Figure 2 | Water sampling points (yard taps) on the Lirima gravity scheme.
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score, (2) random forest ensemble importance score, (3) principal component analysis equinox rotated matrix
loadings and communalities and (4) p-values and standardized beta coefficients of independent variables in back-
ward elimination in ordinary least squares (OLS) regression models. Python tree-based modules of decision trees

and random forests were used to feature the importance of both physical and water quality parameters. Python
and IBM SPSS software were used to analyse the correlation between physical and water quality parameters with
residual chlorine and also regression analysis of these parameters with residual chlorine.

3. RESULTS AND DISCUSSION

This section presents the results of physical and statistical models in predicting residual chlorine decay in drink-
ing water distribution systems. The physical process model used was the EPANET hydraulic analysis model.

Statistical models used were decision tree, random forest, Lasso and ridge regularization models, ordinary
least square multivariate regression model and supervised machine learning artificial neural network (ANN).

3.1. Descriptive statistics for physical and water quality parameters

Table 1 (descriptive statistics) shows how physical and water quality parameters are related to residual chlorine in
the water distribution system.

Table 1 shows that the mean residual chlorine of 0.14 mg/l was below the lower limit of 0.2–0.5 mg/l specified
by WHO (2014). The pH that ranged from 6.71 to 7.83 was within an acceptable range of 6.5–8.5 of US EAS 12
(Universal Standards of East African Standard 12) and Uganda National Bureau of Standards (UNBS, 2014).

3.1.1. Effect of pressure on the performance of EPANET

The traditional design of most water distribution systems uses the DDA (Demand Driven Analysis) model

because it assumes that nodal demands are known and are independent of nodal pressures (Ricca et al. 2019).
However, this study used the PDA (Pressure Driven Analysis) model to calibrate the EPANET hydraulic
model because nodal demand depends on nodal pressure (Oladipupo et al. 2019). This approach was used to

avoid errors in the quantities of water delivered at each water sampling point. The quantity of online residual
chlorine determined at each sampling point depends on quantities of water at that sampling point which is
the medium through which residual chlorine is carried. Pressure is a hydraulic transient that influences signifi-
cantly residual chlorine decay in drinking water distribution systems (Kim et al. 2014; Rajasingham et al.
2020). This is especially so under unsteady flow conditions (Goyal & Patel 2015). The importance of nodal
demand pressure, which is one of the aims of drinking water distribution (Environmental Protection Agency
2018; Mentes et al. 2020), was demonstrated when residual chlorine decay in water distribution responded

well to PDA (Pressure Demand Analysis) model compared to DDA model in extended EPANET simulation
analysis (Melkumova & Shatskikh 2017).

3.2. Physical and water quality parameters

Table 2 (correlation matrix) shows how physical and water quality parameters are related to residual chlorine in a

water distribution network.

Table 1 | Descriptive statistics for physical and water quality parameters in water distribution networks

Water quality and physical parameters Count Mean Std Min 25th percentile Median 75th percentile Max

Residual free chlorine (mg/l) 128 0.14 0.07 0.00 0.09 0.14 0.19 0.37

Distance (Km) 128 2.50 2.2 0.01 0.67 1.71 4.60 7.50

travel time (min) 128 46.13 42.63 5.00 15.00 30.00 65.00 190.00

Diameter (mm) 128 108.28 51.92 50.00 80.00 100.00 100.00 250.00

Turbidity (NTU) 128 0.96 0.77 0.00 0.75 1.07 1.07 5.00

Electrical Conductivity (μS/cm) 128 70.01 2.53 65.40 68.38 70.01 70.03 78.50

pH 128 7.53 0.17 6.71 7.48 7.53 7.60 7.83

Temperature (°C) 128 23.98 1.06 20.10 23.59 23.98 24.31 27.05

Pressure (Bar) 128 2.00 1.08 0.00 1.73 2.00 2.00 6.00

Velocity (m/s) 128 0.04 0.02 0.001 0.02 0.04 0.05 0.10
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Table 2 shows that turbidity, temperature and pH were less influential. This result is consistent with the find-

ings of (Bowden et al. 2019). The exclusion of turbidity as a predictor in modelling residual chlorine decay is a
good measure as it is inappropriate because it does not account for dissolved chlorine reactants (Wu & Dorea
2020).

Velocity was also non-influential. This was probably because of the low velocities. Although high velocities as
hydraulic transients influence residual chlorine, low values have little or no impact on residual chlorine decay
(Kim et al. 2014). The velocity in the main pipes as measured at water demand nodes during this study varied

from 0.001 to 0.10 m/s with a standard deviation of 0.02 m/s (Kwio-Tamale 2022). Pearson’s correlation coeffi-
cient was very low at r ¼ 0.17 at a 5% level of significance. High velocities are known to induce fast residual
chlorine decay rates (Kim et al. 2014). Therefore, the minimal and insignificant influence of velocity on residual

chlorine decay in this study was most probably because of low velocities. This agrees with a reported velocity of
0.56 m/s which had no influence on residual chlorine decay in an experimental study by (Kim et al. 2014).

The pressure at demand nodes during this study varied from a minimum of zero bars to a 75th percentile (third
quartile) value of 2 bars with a mean of 2 bars, standard deviation of 1.08 bars and very low Pearson’s correlation

coefficient of r ¼ 0.03 at 5% level of significance (Kwio-Tamale 2022).

3.3. EPANET hydraulic model

The architecture, structure and functionality of EPANET depend on physical and water quality parameters. The
relevant physical parameters include pipe size, pipe roughness and pipe length. Equally, the relevant water qual-
ity parameters include initial chlorine concentration. Hydraulic parameters were velocity and pressure. The
traditional pseudo-first-order single reactant model was used instead of the parallel double reactant model.

The decay equation for the first-order single reactant kinetic model is as in Equation (2):

Ct ¼ Co: exp (�Kbt) (2)

where

Co¼ initial concentration of chlorine, (mg/l)
Ct¼ concentration of chlorine at time t, (mg/l)
Kb¼ bulk reaction coefficient of chlorine, (hr�1 or day�1)

t¼ time (Hr. or Day)

The traditional pseudo-first-order single reactant model (Tiruneh et al. 2019b) was chosen because of (1) its

popularity and wide use (Tiruneh et al. 2019b), (2) its simplicity and reasonable accuracy in representing chlorine

Table 2 | Correlation matrix of chlorine decay with physical and water quality parameters

Parameters RC IC dist tt dia tur EC pH temp pre vel

RC (mg/l) 1

IC (mg/l) 0.69 1

Dist (Km) �0.11 0.30 1

tt (min) �0.08 0.31 0.71 1

Dia (mm) �0.09 0.20 0.63 0.52 1

tur (NTU) �0.02 �0.07 �0.03 0.05 0.08 1

EC (μSiem�1) �0.20 �0.05 �0.05 �0.06 �0.10 �0.29 1

pH 0.15 0.11 0.14 0.17 0.12 0.03 �0.11 1

temp (°C) �0.21 �0.21 �0.05 �0.002 0.05 �0.10 0.21 �0.06 1

pres (Bar) 0.03 0.19 0.31 0.17 0.02 �0.11 �0.15 0.17 0.23 1

vel (m/s) �0.17 �0.07 �0.03 �0.004 �0.06 �0.01 �0.15 0.20 �0.001 0.32 1

RC¼ residual free chlorine, IC¼ initial chlorine, dist¼ distance, tur¼ turbidity, EC¼ electrical conductivity, temp¼ temperature, pre¼ pressure, vel¼ velocity, tt¼
travel time, dia¼ diameter.

Source: (Kwio-Tamale 2022).
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decay in water systems and (3) performance benefit of higher orders over first-order model being marginal (Goyal
& Patel 2015). The reason for choosing a single reactant model is the very low ratio of fast to slow reactants in the
order of (10:1,000) (Tiruneh et al. 2019b) which is only 1%. In real practice, a mixture of slow and fast chemical

reactants occurs in water distribution systems starting with faster and less concentrated organic reactants fol-
lowed by slower more concentrated inorganic reactants (Tiruneh et al. 2019b). Therefore, each biochemical
reactant group varies from another group in both reaction rates and order of kinetic reactions. This reality sup-
ports the current debate on insufficient knowledge about process modelling for residual chlorine decay (Bowden

et al. 2019; Tiruneh et al. 2019b).

3.3.1. Performance of EPANET in predicting space–time decay of residual chlorine

The EPANET model was calibrated by measured flows and cross-validated by chlorine concentrations at demand
nodes. The purpose of this was to ensure that the calibrated EPANET model carries chlorine residuals. Table 3
shows EPANET hydraulic model calibration and validation for three different water zones in the Lirima distri-

bution system.

Table 3 shows that the range of R2 from 0.72 to 0.98 and mean error from 0.002 to 0.773 mg/l for all three
water zones in calibrating and validating the EPANET model was satisfactory. Table 4 presents the performance
metrics of EPANET in modelling residual chlorine decay in three different water zones and combined water

zones of the Lirima water distribution network. The R2 registered for the combined water zone with the highest
sampling points was 0.24.

The average performance error some scholars argue to be the acceptable range for good EPANET performance
is 0.1–0.2 mg/l (Fisher et al. 2011). Although Table 3 shows that the EPANET hydraulic model was well cali-

brated and validated, it did not perform well enough in simulating chlorine residual, as shown in Table 4.

Table 3 | EPANET hydraulic model calibration and validation by water flows at demand nodes

Demand model Chlorine model

Calibration data

Calibration statistics

Test data

Cross-validation
statistics

Mean error
(m3/d) R2

Mean error
(mg/l) R2

(a) Musiye-Nalukwade water distribution zone

Day1_Run3 (Evening) Tuesday 9th Feb
2021

1.749 0.997 Day8_Run1 (Morning) Wed 24th
Feb 2021

0.168 0.722

(b) Butiru-Manyeke water distribution zone.

Day5_Run1 (Afternoon) Tuesday 23rd
Feb 2021

0.0001 0.999 Day2_Run1 (Afternoon) Wed 10th
Feb 2021

0.002 0.997

(c) Butiru-Vermiculite water distribution zone.

Day3_Run2 (Afternoon) Thursday 11th
Feb 2021

0.653 0.999 Day7_Run1 (Morning) Tue 23rd
Feb 2021

0.773 0.937

Table 4 | Performance of EPANET in modelling free chlorine decay in different water zones

Item Water zone Sample points

Performance metrics

RMSE (mg/l) MAE (mg/l)

1 Musiye 91 0.43 0.63

2 Vermiculite 45 0.87 1.02

3 Manyeke 10 0.00 0.00

4 Combined 146 0.58 1.02

RMSE¼ Root Mean Square Error, MAE¼Maximum Absolute Error.
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Therefore, Table 4 shows that the size of the datasets used clearly influenced the analysis results. Small datasets
performed poorly.

3.3.2. Effect of data size on the performance of EPANET

This poor performance is attributed to limited datasets (data points). The performance of EPANET shows that the
complexity in hydraulic modelling of water quality increases with the increasing density and size of the water dis-

tribution network. Each of the parameters, such as the bulk reaction coefficient of a hydraulic model, can be
different for the separate sub-distribution networks or water zones. In such cases, the use of a single value of
the same parameter when the various sub-distribution networks are combined most probably reduces EPANET’s

hydraulic model performance. Again, in such cases, statistical models expectedly perform better than physical
models given that they eliminate the need for focusing on the details of the chlorine decay process or
mechanisms.

An important note is that water was sampled on average at 1-Km intervals to ensure notably observable

changes in chlorine residual concentrations. This was because the average initial residual chlorine concentrations
at the water treatment plant were low ranging from 0.70 to 1.0 mg/l with a mean dosage of 0.76 mg/l. Apart from
limiting the upper limit of residual chlorine range to 1.0 mg/l possibly to minimize operational costs, it could have

also been to safeguard against the formation of harmful carcinogenic DBPs (Disinfection By-Products) (Goyal &
Patel 2015). This is because excess chlorination above the WHO-recommended minimum of 0.2 mg/l gives rise to
DBPs (Disinfection By-Products) (Tiruneh et al. 2019a). Besides, limiting terminal residual chlorine to under

1.5 mg/l enhances water acceptability (Rajasingham et al. 2020). Although the data augmentation technique
was used to increase on data size, the wide spacing of water sampling points resulted in few data points. A
repeated sampling at the same sampling points on different days and times (mornings, afternoons and evenings),
as shown in Table 3(a)–3(c), ensured that the varied hydraulic parameters (pressures, velocities) and varied water

quality parameters (turbidities, electric conductivities, temperatures, pH, etc.) were captured to increase data size
and variability in data points. This was inappropriate for physical (process) modelling like EPANET hydraulic
modelling which requires large data (Tiruneh et al. 2019a).

3.4. Statistical models

Dimensionality control by the reduction of less important explanatory variables resulted in better model perform-

ance, as shown by a better MSE as low as 0.02 (Bowden et al. 2019). This translates into an interpretable
monotonic square root transformation of MSE to become RMSE¼ 0.14 mg/l.

3.4.1. Decision tree regressor model

The model in Table 5 presents the training and test performance of the decision tree regressor model.

3.4.2. Random forest regressor model

The model in Table 6 presents the training and test performance of the random forest regressor model.

Table 5 | Performance metrics of the decision tree model for free chlorine decay

Item Dataset

Performance metrics

RMSE (mg/l) MAE (mg/l) R2

1 Training 0.03 0.01 0.41

2 Test 0.03 0.01 0.41

RMSE¼ root mean square error, MAE¼maximum absolute error.

Table 6 | Performance metrics of the random forest model for free chlorine decay

Item Dataset

Performance metrics

RMSE (mg/l) MAE (mg/l) R2

1 Training 0.02 0.02 0.41

2 Test 0.05 0.04 0.55

RMSE, root mean square error, MAE, maximum absolute error.
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The decision tree regressor model in Table 5 is overfitted compared to the random forest regressor model, as
shown in Table 6. Since the random forest is an ensemble of decision trees as base models to minimize individual
decision tree overfitting, the random forest model performed expectedly better. This conforms to domain knowl-

edge of random forest’s better performance than that of decision trees.

3.4.3. Regression models

The results for two MLR models for residual chlorine decay in water distribution are presented. These are results
from (1) the OLS (Ordinary Least Squares) MLR model and (2) the PCA (Principal Component Analysis) MLR
model. The model in Table 7 presents the OLS MLR model based on statistically significant variables that are

largely independent of each other, as supported by their respective low VIFs (Variable Inflationary Factors).

Multicollinearity was statistically insignificant (p. 0.05). The final residual chlorine concentration in the water

distribution network, based on statistically independent and statistically significant water quality and water dis-
tribution system parameters, is described by Equation (3).

fc ¼ 0:415þ 0:548ic� 0:012d� 0:005ec (3)

where fc ¼ Final free chlorine (mg/l), ic¼ Initial free chlorine (mg/l), d¼Distance (Km) and ec¼Electrical con-
ductivity (μS).

Table 8 compares two regression models of (1) OLS and (2) PCA (principal component analysis) based on the

three most statistically significant predictors of (1) initial chlorine, (2) electrical conductivity and (3) distance that
explain over 90% variability in residual chlorine decay in water distribution.

Table 8 agrees with Bowden et al. (2019) whose regression model found that initial chlorine together with pipe

diameter and temperature accounted for 73%–87% of residual chlorine decay in water distribution.

3.4.4. ANN model

The performance of the ANN for residual chlorine in gravity water distribution is summarized in Figure 3. The
outputs and targets in Figure 3 are the predicted and actual residual chlorine concentrations, respectively. The
R-score values were 0.93, 0.68 and 0.94 for training, validation and test datasets, respectively.

The superior performance of ANN over MLR in this study was consistent with earlier findings of (Bowden
et al. 2019). This further demonstrates the general superiority of non-parametric models over parametric models.

3.5. Comparison of physical and statistical models

Table 9 ranks models based on the performance metrics. More than one performance metric was used to benefit
from the unique advantages of each metric in order to capture various aspects of model performance, as
advanced by (Oladipupo et al. 2019). The ranking also considered how interpretable a model is (Oladipupo

Table 7 | Ordinary least squares linear regression model for statistically significant variables

Model R R Squared Adjusted R Squared Std. error of estimate

(a) Model summary

2 0.79a 0.63 0.62 0.045

a. Predictors: (1) Constant, (2) initial chlorine, (3) distance, (4) EC Durbin-Watson¼ 1.26

Unstandardized
coefficients

Standardized coefficients Collinearity statistics

(b) Model coefficients

Predictors B Std. Error Beta t Tolerance VIF

Constant 0.42 0.112 3.69

initial chlorine 0.55 0.040 0.80 13.76 0.000 0.906

Distance �0.01 0.002 �0.37 �6.25 0.000 0.907

EC �0.01 0.002 �0.18 �3.18 0.002 0.995

Dependent Variable: final chlorine EC¼ electrical conductivity VIF¼Variable Inflationary Factor
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et al. 2019). The statistics for the multi-linear regression model were those contained in Table 7 (the linear
regression model for statistically significant parameters of chlorine decay in the water distribution network).

Table 9 shows that the ANN performed best because of having the highest R2 of 0.94, least RMSE of 0.04 mg/l

and second lowest MAE of 0.05 mg/l (just above the lowest MAE of 0.04 mg/l). Besides, the test R2 of ANN of
0.94 as in Figure 3(c) was more than its training R-score of 0.93, as shown in Figure 3(a). This suggests that the
ANN model did not overfit. However, ANNs are difficult to interpret. The contribution of each parameter in pre-

dicting a target variable like final chlorine is important. This is not the case with ANN because it is a ‘blackbox’

Table 8 | Performance of linear and principal component regression models

Item Model characteristic statistics

Regression models

Deviation from each
other

OLS linear regression
model

Principal component regression
model

1.0 Model summary

1.1 Pearson’s coefficient, r 0.793 0.788 0.005

1.2 R2 0.623 0.620 0.003

1.3 Adjusted R2 0.619 0.611 0.008

1.4 Standard error of model estimate
(mg/l)

0.0453 0.0456 0.0003

2.0 ANOVA statistics

2.1 F-score 69.250 67.480 1.770

2.2 Model significance (p-value) 0.000 0.000 0.000

3.0 Collinearity statistics (VIF)

3.1 Electrical conductivity 1.005 1.000 0.005

3.2 Distance 1.103 1.000 0.103

3.3 Initial chlorine (Chlorine dose) 1.004 1.000 0.004

Figure 3 | Training and validation performance of the artificial neural network model for residual chlorine. Y¼ output: predicted
residual chlorine (mg/l); T¼ target: actual residual chlorine (mg/l); All¼whole (unsplit) dataset.
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unlike interpretable hedonic parametric models like linear regression. The SHAP (SHapley Addtive exPlainer)
utility function that has been developed to ‘whitewash’ blackbox model outputs by explaining the importance

of parameters still has a major weakness. SHAP explainer only presents feature importance values as in tree-
based (decision tree and random forest) and ANN regressor models. However, the desirable analytical relation-
ship in terms of algebraic expressions between each blackbox model input variable and blackbox model output

variable is lacking. This is a major weakness and therefore, a research gap. In this regard, hedonic parametric
linear regression models that express the relationship of each independent variable to the dependent variable
by individualized distinct beta coefficients are better. Although decision trees and random forest regressors per-

formed well, they too are non-interpretable non-parametric models.

4. CONCLUSION

The values of RMSE for EPANET, linear regression, lasso regression, ridge regression, decision tree, random forest
and ANN were 0.43, 0.18, 0.06, 0.05, 0.05, 0.05 and 0.04 mg/l, respectively. The corresponding R2 values for ANN,

multi-linear regression, EPANET, random forest and decision tree were 0.94, 0.62, 0.24, 0.44 and 0.41, respectively.
These results illustrate that the ANN performed better than EPANET. Therefore, this result supports the use of a
supervised machine learning (deep learning) ANN as a primary tool for predicting residual chlorine decay in

water distribution systems. However, non-parametric models like artificial neural networks that perform well in
model prediction are poor in model interpretation. These results illustrate that statistical models, especially the
ANN performed better than EPANET especially when the density and size of the water distribution network are
large. However, since mechanistic models predict better than empirical models, EPANET, which is a mechanistic

(physical) model, should be used in small water zones for secondary chlorination because of more uniform par-
ameters like temperature, hence a more reliable decay constant in an exponential kinetic model in smaller water
distribution networks. For empirical (statistical) models, a dual approach of (1) model performance metric and

(2) model interpretability is necessary for choosing and deploying prediction models. Such a dual approach in
empirical (statistical) prediction modelling will enable non-parametric artificial neural networks as models with
the best model performance metric but poor interpretability to be enhanced with parametric regression models

that have good model interpretability but inferior model performance relative to artificial neural networks. The
study was limited to EPANET as the only process-based model because of its popularity in tracking dissolved
chemical constituents like residual chlorine in a Lagrangian manner. However, other water quality modelling

tools like WaterCAD, WaterGEMs, OpenFlows, Mike, Pipe, Civil Designer, etc. exist in the water industry. There-
fore, future research is necessary to compare these other process models against the six statistical models used in
predicting residual chlorine decay in drinking water distribution systems. The study was also limited to the dry
period of February–March during which data were collected. Therefore, a study during the wet season is rec-

ommended to compare how residual chlorine decay occurs in wet spells.

FUNDING

This study was financed through an award to the first author in the phase of the third competitive research grant

from Kyambogo University, Uganda, under the support of the Government of Uganda.

Table 9 | Comparison of models in predicting free residual chlorine

Model

The goodness-of-fit statistics Performance accuracy

Rank of modelAdjusted R2 Std/error (mg/l) RMSE (mg/l) MAE (mg/l)

1. EPANET 0.24 0.43 0.63 7

2. Linear regression 0.62 0.045 0.18 2

3. Lasso regression 0.06 6

4. Ridge regression 0.05 5

5. Decision tree 0.41 0.05 0.04 4

6. Random forest 0.55 0.05 0.04 3

7. Artificial neural network 0.94 0.04 0.05 1

RMSE, root mean square error; MAE, maximum absolute error.
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