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ABSTRACT 

Prolonged insufficient precipitation associated with evapotranspiration affects 

society in various ways such as wilting of crops. Studies with comprehensive 

analyses of climatic droughts while considering hydro-climatic differences among 

the various Water Management Zones (WMZs) in Uganda are inadequate. This study 

addressed this, by extracting extreme climatic indices (ECI) from precipitation and 

potential evapotranspiration (PET), characterizing climatic drought across the WMZs 

and analyzing connection of variability in the indices to large-scale ocean-

atmosphere conditions from 1979 to 2013. Examples of the extracted ECIs included 

number of dry days (NDD), number of consecutive dry days, and sum of PET, above 

a defined threshold.  The long term statistics of the extreme climatic conditions 

showed Kyoga and Victoria as the driest and wettest WMZs in Uganda. The extent 

and severity of drought were found to depend on the threshold for extracting the 

ECIs. Furthermore, the severity of the drought was found to be disproportionate 

across the country with the Kyoga and Victoria WMZs being the most and least 

severely affected by the impacts of climatic drought. Generally, all WMZs exhibited 

decreasing trends in the NDD over the study period, indicating that the country was 

becoming wetter recently. Across the country, the Indian Ocean Dipole (IOD) was 

negatively correlated with variability of a number of ECIs of both precipitation and 

PET. However, correlation between Quasi Biennial Oscillation (QBO) and 

variability of several ECIs was generally positive (p<0.05).   

Key words: Drought, Climatic Indices, Evapotranspiration, Variability, Trend 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Extreme rainfall that is associated with flood and drought tends to have substantial 

impact on the way community lives (Gudoshava et al., 2020; Shilenje et al., 2019) in 

various parts of the world. Drought is considered a sustained period with dry climatic 

condition, marked by scarcity of water (Crossman, 2018) that tends to occur globally, 

with negative impact on environmental systems and socio-economic condition of a 

country and in extreme cases, results in to death (Jedd et al., 2021; Kyatengerwa et 

al., 2020; Eslamian et al., 2017; Meza et al., 2020; Mfitumukiza et al., 2017). The 

severity further extends to limited grazing land thus reducing availability of fodder 

for cattle (Lwasa, 2018) as livestock productivity reduces. While droughts are driven 

largely by rainfall deficit, its impact can broadly be categorized as meteorological, 

hydrological, agricultural and socioeconomic droughts (Choi et al., 2013) 

respectively.  

Rojas, (2020) and Dai, (2013) study findings established positive drought intensity 

around the world in some seasons. This was linked to 21st century and was attributed 

to reduced precipitation and/or increased evapotranspiration. The global rise in 

temperature by 0.91°C in the past 100 years (Tignor and Allen, 2013), continues to 

impact on global warming, agricultural and forestry production. For example, Lewis 

et al., (2011) and Yang et al., (2018) study finding showed severe drought experience 

in more than half of the Amazon that caused increase in tree mortality and reduced 

tree growth. 
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The drought episodes were greatly associated with high spatio-temporal variability in 

rainfall distribution over the past few decades across the Sub-Saharan Africa (Owusu 

and Waylen, 2013; Bibi et al., 2014). This variability influences precipitation deficit 

and evapotranspiration across the country (Ssentongo et al., 2018), that directly 

contribute to the dry condition. Though it is well known that drought is more 

associated with aridity, studies conducted for example by Tánago et al. (2016) 

indicates devastating vulnerability, due to  the impact of drought in some tropical 

areas of the world. In their study, Ayana et al. (2016)  indicated an increase in the 

duration of drought and the areas impacted in the last two decades, within the East 

Africa region.  

Uganda in particular, experiences a bi-modal rainfall season per year in most parts  

with largely varied tropical climate given its location in the equatorial region 

(Nsubuga and Rautenbach, 2018; Nsubuga et al., 2017). The variation is associated 

with droughts episodes which are disproportionate across the various regions of 

Uganda. It is because of the differences in the distributions of climatic variables, 

such as precipitation. According to Egeru et al., (2014), Karamoja region (north east) 

has a uni-modal regime and experience long dry spell that varies in space. Similarly, 

Aswa basin is dry and more susceptible to severe condition compared to Lake Kyoga 

basin (Byakatonda et al., 2021). However, Demissie et al. (2019) projected a 

decrease of about 3-5 days in the longest consecutive dry days (CDD) across most 

parts of the study area except, the southern area (slight increase in CDD in the long 

rain season). Due to this projection, Zinyengere et al. (2016) estimated an economic 

loss in the country of about US$ 1.5 billion by 2050.  
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The United Nations, Sustainable Development Goal (SDG) thirteen, identifies with 

measurers to address climate change and its impact through reduction of global 

average temperature (UNDP-SDG, 2015). Two of the several targets under this goal, 

promotes strategies for effective climate change planning and management, and 

adaptive capacity to potential hazards related to climate and natural disasters. 

Uganda in its National Development Plan (NDP) III, vision 2040 (National Planning 

Authority, 2020), recognizes the contribution of effective management of climate 

and natural resources issues to address disaster challenges for improvement of 

household income and sustainable livelihood. Consequently, strategic responses by 

government have been developed for adaptation and mitigation against adverse 

impact of changing climate. In addition, Uganda also adopted the Integrated Water 

Resources Management (IWRM) strategy, which is being implemented by using the 

catchment-based approach (Ministry of Water and Environment, 2014). Under this 

framework, various Catchment Management Plans (CMPs) have been developed to 

address changes in the climatic variables and depends mainly on the level of hydro-

climatic information available, prior to the plan preparation.  

However, the current information on dry climatic conditions is insufficient to explain 

in particular, the changes in dry climatic conditions related to evapotranspiration. 

Several studies (Byakatonda et al., 2021; Byakatonda et al., 2018) have characterized 

climate drought based on standard precipitation and evaporation index (SPEI) 

(McKee et al., 1993), drought severity index (DSI) (PaiMazumder et al., 2013), 

Palmer drought severity index (PDSI) (Palmer, 1965) and Standardized precipitation 

and evapotranspiration index (SPEI) (Vicente-Serrano et al., 2010). To precisely 
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determine water balance, both precipitation and PET should be combined as key 

factors in drought analysis. Though SPI is the most commonly used index, Anshuka 

et al., (2019) recommended drought analysis using other indices due to its inability to 

characterize drought events effectively (Wu et al., 2007). Notably, the East African  

region has been the focus for various drought studies in recent years (Haile et al., 

2019). Much of these studies did not consider this important climatic variable 

(evapotranspiration). For predictive planning of water resources management, it is 

important to have good understanding of the historical trend and variability of 

climatic indices on precipitation and evapotranspiration that explains dry condition. 

This study aimed to investigate changes in dry condition across the four WMZs in 

Uganda, which cover Lake Albert, Kyoga, Victoria and Albert Nile basins. 
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1.2 Problem statement 

Several parts of the world continued to show increase in variability of drought 

frequency and severity (Mukasa et al., 2020). On average, about 10% of Ugandans 

experience water scarcity annually and are likely to be more during the dry year 

(World Bank, 2019). It is estimated that about US$ 1.5 billion  economic losses will 

be incurred by 2050, as a result of the changing climatic variable impact (Zinyengere 

et al., 2016). 

The impacts of drought on livelihood are disproportionate among the regions of 

Uganda. Global Facility for Disaster Reduction and Recovery, GFDRR ( 2017), 

reported close to 24 million people suffered from the impact of drought between 

2004 and 2013. It estimated that $1.2 billion (about 7.5% of Uganda’s 2010 Gross 

Domestic Product (GDP)) loss and damage was incurred in 2010 and 2011 

respectively. Uganda losses on average, $20 million in agriculture annually and in 

2017 more than 1 million people needed food assistance (World Bank, 2019). 

Drought occurrence impacts agricultural, energy productivity and economic growth. 

Several studies were conducted on drought in Uganda, for instance by Demissie et al. 

(2019); Mukasa et al. (2020) and Twongyirwe et al. (2019). However, these studies 

conducted earlier did not consider extreme precipitation and evapotranspiration 

indices to analyze drought. Furthermore, they left out the variance in the hydro-

climate of the four WMZs in Uganda. There is the need to address the research gap 

on drought, considering the entire country, which has compelled the undertaking of 

this research.  
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1.3 Objectives of the study 

1.3.1 Main objective 

The main objective of this study was to investigate the changes in climatic dry 

conditions across the WMZs in Uganda. 

1.3.2 Specific objectives 

The specific objectives of this study included; 

a) Characterizing climatic dry conditions across the WMZs; 

b) Determining significance of changes in the extreme climatic indices; 

c) Analyzing multi-decadal co-variability in extreme climatic indices with changes 

in large- scale ocean-atmosphere conditions. 

1.4 Research questions 

a) What are the characteristics of dry climatic conditions across the WMZs? 

b) What is the significance of changes in the extreme climatic indices? 

c) What is the relationship between multi-decadal co-variability in extreme climatic 

indices with changes in large- scale ocean-atmosphere conditions? 

1.5  Research justification 

Investigation of the changes in climatic dry condition across the four WMZs in 

Uganda, especially understanding the trend and variability of climatic variable like 

rainfall and PET, will guide the planning for the water catchments within these zones 

and decisions in water resources management (WRM). This planning process 
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recognizes the need for accurate information on the dry state of the zones in terms of 

space and time, which is lacking in this case.  

The increasing threats from global warming and continuous anthropogenic activities 

are clearly visible in these WMZs.  Therefore, this research is vital in informing 

policy makers at national and local level on strategy for sustainable adaptation to the 

changes in climatic dry conditions. Implementers, such as water resources planners, 

engineers and climate experts will find this information useful in their routine 

applications. 

1.6 Significance 

Knowledge of the characteristics of climatic condition is vital for planning for 

climate adaptation and resilient coping mechanisms of communities. In addition, 

such information is helpful in guiding the catchment planning processes in the water 

management zones.  

Maps showing the correlation between different climatic indices and large-scale 

ocean-atmosphere conditions generated are considered vital for the weather 

prediction, especially to the meteorological operation of Uganda, as such critical 

decision is supported to guide the Country’s climate and productive weather sectors.  

The research is important to policy makers and regulatory bodies in the water and 

meteorological sector, with an improved understanding of the dynamic of the 

changes in climatic dry conditions across the WMZs in Uganda. It also supports the 
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development of a strategy for climate adaptation measures for sustainable 

community livelihood.  

The research will provide knowledge to learners at post graduate and undergraduate 

level. The recommendation offers opportunity for further research areas, hence 

contributing to further academic fields.  

1.7 Scope of the study 

1.7.1 Time scope 

This research was conducted from August 2019 to June 2021. 

1.7.2 Geographical scope 

The study was limited to the four WMZs of Uganda, located in the East Africa 

region. 

1.7.3 Content scope 

This research focused on analyzing trend and variability of the climate indices, 

characterization of the climatic condition and correlation between the large-scale 

ocean-atmosphere conditions with the indices. Validation of the reanalysis data was 

also carried out with station data, obtained from the study area. The research focused 

on analysis of the correlation between climate indices and variability in drought 

indicators. 
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1.7.4 Financial scope 

The finances used, was limited to the cost of acquiring data required for validation, 

stationery and printing services, transport and related logistics only. About five 

million Uganda shilling was used to facilitate this financial demand. 

1.8 Conceptual framework 

The increase or decrease in precipitation and evapotranspiration (independent 

variables) as a result of influence from the sea surface temperature, sea level pressure 

(moderating factors), will cause changes in the trends and variability (dependent 

variables). Figure 1.1 shows the conceptual framework depending on the variables. 

Independent variables                                                           Dependent variables 

 

 

 

 

                                      Moderating factors 

 

 

 

 

 

Figure 1.1: Conceptual framework 

1. Extreme precipitation indices 

2. Extreme PET indices changes 

1. Drought frequency 

2. Drought severity   

 

1. Sea surface temperature 

2. Sea surface pressure 

3. Large scale ocean-atmosphere condition 
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1.9 Chapter summary  

This chapter introduces the research area together with the justification for 

conducting the study and a review of the changes in climatic dry condition across the 

WMZs in Uganda. Research questions were formulated to provide framework on the 

changes in climatic dry condition. The chapter also describes the purpose and 

specific objectives of the study including the scope. Further, linkages between 

rainfall and evapotranspiration trends and variability were presented. This 

understanding guides the literature search and limit of data acquisition in order to 

concentrate on information that is useful to attainment of the research objectives.   
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CHAPTERTWO: LITERATURE REVIEW 

2.1 Introduction 

Drought can be taken as “a period of abnormally dry weather, sufficiently prolonged 

for the lack of precipitation, to cause a serious hydrological imbalance” (IPCC, 

2007). Drought is more pronounced during precipitation deficit and could be 

worsened by evapotranspiration. The key drivers of drought conditions in the WMZs 

are mainly changes in climatic variables and land cover. Change in this case referred 

to understanding trend and variability of the climatic condition (Mubialiwo et al., 

2021).  

The goal of this chapter was to evaluate the different methods of conducting trend, 

variability and correlation analysis to investigate change in dry condition. 

Assessment of the advantages and limitations of methods, to inform selection of 

appropriate approaches and models for application were reviewed alongside other 

methods. Further, review of the methods of dispersion, to characterize climatic 

conditions, were equally done in this chapter.  

2.2 Trends 

Trend analysis helps in understanding the changes in temperature, rainfall, river flow 

of a catchment (Adarsh and Reddy, 2015). It looks at both the slope and direction of 

the changes in variables over time. This is important because, the predictability of the 

likelihood of future occurrence in changes in climatic condition can be easily 
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derived. Such certainty further guides planning process in management of catchment 

water resources (Onyutha,  et al., 2021). 

2.2.1 Trend magnitude 

According to Onyutha (2018), trend magnitude indicates the amount variables 

changes linearly over a specific time of observed data. Trend magnitude is also 

known as trend slope. 

The trend magnitude (m) is can be given by (Theil, 1950) and (Sen, 1968) 

𝑚𝑖 = Median (
𝑥𝑗 − 𝑥𝑖
𝑗 − 𝑖

) , for 𝑖 = 1,2,……… . , 𝑛                                                         (2.1) 

where n is the sample size, while 𝑥𝑗 and 𝑥𝑖  are data values at time j and i (𝑗 > 𝑖). 

From equation (1), the significance of 𝑚𝑖 is tested, for a no trend, H0, 𝑚𝑖 = 0 and 

alternative, H1, 𝑚𝑖 ≠ 0 at selected α, adopted as shown by Onyutha (2016c). The 

estimate of trend slope using Sen’s slope is robust (Onyutha, 2016a) and unbiased 

(Pechlivanidis et al., 2017). 

2.2.2 Trend direction  

Trend direction indicates the dependence of a variable on time, which can take either 

positive or negative pattern (Onyutha, 2017). This can be determined in terms of the 

significance of the non-zero slope at a selected significance level, 𝛼𝑠%. Various non- 

parametric methods are used to detect trend including the Mann-Kendall (MK) 

(Mann, 1945, Kendall, 1975), Spearman’s Rho (SMR) (Spearman, 1961; Lehmann 
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and D’Abrera, 1975;  Sneyers, 1991), the Cumulative Sum of rank Difference (CSD) 

test (Onyutha, 2016a, c, e). 

2.2.3 Significance of trend 

The need for significance assessment of trend is because some factors such as noise, 

affect the sample variation (Onyutha, 2017) in terms of CV. In order to check if a 

linear increase or decrease is significant, trend tests are carried out by both 

parametric and non-parametric methods. 

2.2.4 Methods for trend analyses 

Several methods are used to analyze trends, and include both parametric and non-

parametric methods. Non parametric method is normally desired because they deal 

with ranks of data (Ahmad et al. 2017). However, it can be biased by the effect of 

autocorrelation. Examples of this method include, MK test (Mann, 1945 and  

Kendall, 1975), SMR test, CSD test, Theil and Sen’s slope method, Sequential 

Mann-Kendall test (SQMK). While parametric methods suppose a fundamental 

distribution (generally normal) for the variables of interest. Example of parametric 

method include Simple Linear Regression test and Regression analysis, Buisehand 

range test (Buishand, 1982). 

2.2.4.1 Mann – Kendall test  

The rank based MK test is determines temporary trend in hydro-meteorological data.  

Among the various methods for trend detection, the MK test is the most commonly 
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applied. This is because it makes use of ranks which is not affected by the 

requirement of normal distribution (Onyutha, 2016b) and breaks in data due to 

inhomogeneity do not largely raise its sensitivity (Hossein and Hosseinzadeh, 2011). 

However, this method may not necessarily be ideal for detecting trend at all times 

due to serial correlation that it does not consider, (Abeysingha et al., 2016). 

The MK test  statistic S is given by; 

S = ∑ ∑ sgn (𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

                                                                                           (2.2) 

where n, 𝑥𝑗 and 𝑥𝑖 are as defined for Eq (2.1), and 

sgn(𝛿) =  {
1  if  𝛿 > 0
0  if  𝛿 = 0
−1 if 𝛿 < 0

                                                                                                     (2.3) 

where  𝛿 = (𝑥𝑗 − 𝑥𝑖) 

For large samples, where 𝑛 > 10, normal distribution for sampling of S is considered 

with mean equal zero and variance (Kendall, 1955), given as in equation 2.4. 

Var (S) =  
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑘(tk − 1)(2tk + 5)

𝑡𝑛
𝑘=1

18
                                    (2.4) 

where tn is the number of tied groups and 𝑡𝑘 refers to the number of data points in 

the 𝑘𝑡ℎ tied group. 
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The strength of relationship between variables is measured using Kendall’s rank 

correlation Statistic Z, defined using equation 2.5: 

Z =  

{
 
 

 
 

S − 1

√Var(S)
  if  S > 0

      0            if  S = 0
S + 1

√Var(S)
  if  S < 0

                                                                                                (2.5) 

If the value of|𝑍| > 𝑍𝛼/2, then the null hypothesis of no trend is rejected at 𝛼 level 

of significance in a two sided test (i.e. the trend is significant). Positive and negative 

Z values indicate increasing and decreasing trends, respectively. 

2.2.4.2 Spearman’s rho test (SMR) 

Gauthier, (2001) considered this method as robust and simple test method to use, 

which does not need any distribution of samples and yet not altered by a few 

abnormal values. When using the SMR method, for a sample size n greater than 30, 

Spearman’s, rs statistics will be normal (Sabzevari et al., 2015) and the z statistics is 

defined by equation 2.6 below. 

z = rs√𝑛 − 1                                                                                                                        (2.6) 

The increase and decrease in trend will be indicated by the positive and negative 

value of z. With |z| value greater than 1.96 as a threshold for 95% Confidence 

Interval (C.I), the H0 is rejected, meaning a significant trend is achieved. 
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2.2.4.3 Linear Regression 

This method uses a straight line to fit distribution and test in order to determine if the 

slope is zero or not. Considering a straight line of the nature 𝑦 = a + b𝑥, the test 

statistic t is calculated and can be tested using student’s t-test.  

Linear regression is normally applied when establishing a relationship between two 

variables. An increase in trend is usually shown by positive value of the slope and a 

decrease is indicated by a negative value. The advantage of this method as indicated 

by Hirsch et al., (1991) is that the test analyzes both slope and intercept. 

2.2.4.4 CSD test  

CSD test (Onyutha, 2016a,b,c,d) is based on ranks of data. It employs both statistical 

and graphical analysis of changes in a data set. When you consider dataset 𝑋 of 

sample size 𝑛, 𝑎𝑖 (difference between the exceedance and non-exceedance counts of 

data points in 𝑋) is obtained as a new time series, which replicates 𝑋. The CSD 

statistic 𝐾 is computed using Onyutha (2016c). To detect long term trend, the trend 

statistics K, is computed using the equation 2.7 below. 

K =
6

(n3 − n)
∑∑𝑎i

i

j=1

n−1

i=1

                                                                                                  (2.7) 

where; 𝑎𝑖 is based on 𝑋 and it is computed using (Onyutha, 2016a,b,c) 
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ai = 2∑sgn1

n

j=1

(yj − xi) − (n −∑sgn2

n

j=1

(yj − xi))  for i = 1,2, … . . , n    (2.8) 

where, 

sgn1(yj − xi) = {
1 if (yj − xi)  > 0

0 if (yj − xi)  ≤ 0
                                                                  (2.9) 

sgn2(yj − xi) = {
1 if (yj − xi) = 0

0 if (yj − xi) < 0 or (yj − xi) > 0
                                       (2.10) 

Rank difference 𝑎𝑖 is useful in detecting both trend and variability (Onyutha, 2018). 

For an increase and decrease in trends, 𝐾 values are reflected in positive and 

negative, respectively. K is normally distributed with mean of zero and variance (𝑉𝐾) 

given by (Onyutha, 2016c,d) 

VK =
1

n − 1
(1 −

10

17
𝑏2 −

7

17
b)                                                                                 (2.11) 

where 𝑠𝑔𝑛2(𝑦𝑗 − 𝑥𝑖) is defined in equation (2.10) and 𝑏 in equation (2.12) below is 

the measure of ties in the data such that Onyutha, (2016b);  

𝑏 =
−1

𝑛2 − 𝑛
(𝑛 −∑∑𝑠𝑔𝑛2(𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 𝑥𝑖))                                                            (2.12) 
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The standardized statistics of the CSD test (𝑍CSD) is given by equation (2.13). Let 

Zα
2⁄
 denote the standard normal variate at the significance level α%.  The 𝐻0 (no 

trend) is accepted if |Z| < Zα
2⁄
, otherwise the 𝐻0 is rejected. The 𝑍𝐶𝑆𝐷 is given by  

ZCSD =
K

√𝛽 × V𝐾
                                                                                                  (2.13) 

Where the term 𝛽 corrects V𝐾 from the effect of persistence in the data. The details of 

𝛽 can be obtained from Onyutha (2016d). 

2.2.5 Past studies in Uganda on climatic trends 

The MK was applied in several studies in Uganda; for instance in Onyutha et al., 

(2016); Mubiru et al., (2018); Nsubuga et al., (2013); Kilama Luwa et al., (2021); 

Owoyesigire et al., (2016); Iwadra et al., (2020); Mugume et al., (2016); Ojara et al., 

(2020); Mubialiwo et al., (2021) and Mubialiwo et al., (2020). 

In Uganda, Mubiru et al. (2018) studied climate trends based on historical rainfall 

and temperature data from 1938-2012 and used the GenStat Discovery Version 3. 

The study fitted the trend lines using the linear regression models with GenStat 

statistical package. The finding established a decline in average annual rainfall trend 

and normal trend for Hoima and Rakai respectively, from three stations in Uganda.  

Nsubuga et al. (2013), analyzed rainfall trend and variability in the mid-twentieth 

century over south western Uganda using both the MK test and linear regression 
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method. They applied the test at 5% significance level to annual rainfall. The result 

showed 63% of the stations had a negative trend with 32% being significant. 

The MK test was used by Kilama Luwa et al.( 2021) in detection of both trends and 

variability in climate and hydrological series dataset in the Sipi sub-catchment on the 

slope of Mount Elgon, Uganda. This study used observed rainfall and temperature 

data from 1981 to 2015, got from the Uganda National and Meteorological Authority 

(UNMA). The mean, standard deviation (SD) and coefficient of variation (CV) were 

first analyzed to characterize rainfall and temperature data over the catchment. The 

MK test was then applied, based on the H0 (no trend). The trend analysis result 

revealed an increase in the annual minimum and mean temperature, with direct 

influence on the evapotranspiration trend. The study also found no significant trend 

in the rainfall. However, the study recommended more meteorological stations in the 

catchment to address the limitation in data availability.  

Mugume et al. (2016) study on patterns of decadal rainfall variation over a selected 

region in Lake Victoria basin, Uganda, applied MK trend test to determine intra-

seasonal variability using the March-May season. The result showed that trend of the 

light rain days was increasing with 74% accounting for 2-4 consecutive dry days 

(CDD), though the trends were all insignificant.  

Owoyesigire, Mpairwe and Peden, (2016) study, used MK test to analyze trends in 

rainfall and temperature. Daily time series data on rainfall and temperature was got 

from UNMA, covering the period 1961 to 2013. The finding showed a continuous 

rise in maximum and minimum temperature in Mbarara, Soroti and Masindi stations. 



20 

 

 

 

Consecutive dry days (CDD) a measure of extremely dry days with rainfall less than 

1mm, indicated a weak declining trend in areas of Mbarara and a significant decrease 

in the Masindi area. However, there was a strong significant trend in CDD in the 

Soroti region. 

Iwadra et al. (2020) investigated future changes in onset and cessation of rain over 

the Aswa catchment in Uganda. The study analyzed trends of wet and dry condition 

using data (2000 – 2016) obtained from Tropical Rainfall Measuring Mission 

(TRMM) based on a non-parametric Mann – Kendall test. The trend result 

established a positive simulated future annual rainfall over the Aswa catchment. The 

classification of standard precipitation index (SPI) based on moderate, severe and 

extreme condition indicated a declining trend in to the future over the catchment, for 

all the selected station. 

Onyutha, (2016b) analyzed trends in rainfall across Uganda and he used the CSD 

method. He used daily rainfall data from Princeton Global Forcing (PGFs) (Kalnay et 

al., 1996) for the period from 1948-2008. The result showed a positive increase in 

long term rainfall in the southern part of VWMZ, mainly around L. Victoria and 

south eastern KWMZ. This explains a decrease in dry conditions around these areas. 

A large part of UNWMZ especially West Nile region was generally characterized 

with a decline in rainfall, which describes an increase in drought episodes. In the 

south western Uganda, the extreme rainfall events were characterized by both 

increase and decrease. 
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In a study to understand trends in length of dry spells across the Lake Kyoga basin,  

Ojara et al. (2020) applied the MK test. The study used historical daily observed 

rainfall data from nine UNMA stations that covered a period from 1963-2017. The 

study used the direct approach  to determine the longest consecutive dry days and 

defined it as days with rainfall less than 0.85mm (Stern et al., 1982;  Barron et al., 

2003). The spatial distribution of the longest dry spell was interpolated to raster 

surface using ArcGIS10.3 software by Kriging interpolation method. The result 

showed an increase in the maximum dry spell during the March, April and May 

(MAM) rainy season in five out of the nine stations. 

Mubialiwo et al., (2021) analyzed changes in precipitation and evapotranspiration in 

two catchments of the northeastern part of Uganda. In this study, they adopted the 

CSD method to test the significance of trend slopes. Mubialiwo et al., (2020) also 

applied the CSD method while making use of the PGF data. The result by Mubialiwo 

et al., (2020) showed a positive significant trend in the annual evapotranspiration 

over the catchment. 

2.3 Other studies on trends in the hydro-climate of East Africa 

Various studies in East Africa conducted trend analysis using different methods, 

these include; Langat et al., (2017); Fikru et al., (2017); Ongoma et al., (2019); 

Ayugi et al. (2020); Ongoma et al. (2018); Rowell et al. (2015); Shiferaw et al. 

(2014); Gitau et al. (2018) and Cattani et al. (2018). 
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Over the equatorial East Africa, Gitau et al. (2018) analyzed trends of intra-seasonal 

descriptors of wet and dry spell from 1962 - 2012 and used a rank based MK test to 

determine the significance. The statistical test on dry spell descriptors, such as dry 

days showed increasing trend at both seasonal and monthly time scale. The overall 

summary of finding was that there were certain locations that have a consistent 

significance trend signal, which appears at both seasonal and monthly timescale. In 

the case of Uganda, the study also found the shorter wet spell and longer dry spell 

throughout the season. 

Cattani et al. (2018) applied a non-parametric MK test to analyze the trend of the 

ETCCDI index time series in evaluation of the presence of significant trends on 

annual and seasonal scales. The result shows that most area of East Africa is 

characterized by the shortest dry periods (CDD index), no longer than 40 consecutive 

days, with standard deviation ranging from 20 – 40%. Generally, the study 

established that a higher percent standard deviation was associated with the lower 

ensemble mean values. The result also showed a significant trend in CDD index, 

with indication of increase around Lake Victoria region. 

Ongoma et al., (2019) and Ongoma and Chen (2017) applied the MK test to detect 

trends in time series of rainfall across East Africa. The result indicated reducing 

trends in all the extreme rainfall indices (total precipitation, R≥ 10𝑚𝑚, 𝑅 ≥ 20𝑚𝑚) 

over Uganda for the period from 1980 to 2010, mainly attributed to the decrease in 

rainfall over the region. 
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2.4 Variability  

The World Meteorological Organization (WMO) (2019) defined climate variability 

as “the changes in the mean state and other statistics of the climate on all temporal 

and spatial scales, beyond individual weather event”. It is used to check alteration of 

climatic statistics over the time span (e.g. a month, season or year). Variability can 

be classified as a combination of preferred spatial patterns, for example as modes of 

climate variability (Wodaje et al., 2016).(Gonzales Amaya, Villazon and Willems, 

2018)(Gonzales Amaya, Villazon and Willems, 2018) 

2.4.1 Methods for variability analyses 

Different methods are available and used in the analysis of variability. These include; 

Non-parametric Anomaly Indicator Method (NAIM), Quantile Perturbation Method 

(QPM), Empirical Orthogonal Function (EOF), Auto correlation Spectral Analyses 

(ASA), the use of Coefficient of Variation (CV), Standard deviation (SD). 

2.4.1.1 EOF 

The EOF uses the principle analysis component to group time series data. The idea it 

to extract dominant coherent variations. The problem with the use of EOF may arise, 

if the structure of the data is interpreted as taking individual dynamical, kinematic, or 

statistical meaning. Several studies applied EOF methods in their variability analysis. 

These include, Onyutha and Willems (2017) and Onyutha (2016a).  
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Onyutha and Willems (2017) applied EOF to analyze rainfall variation in the River 

Nile basin. The EOF analysis in this study considered space and time as the structure 

and sampling dimensions, respectively. The complementary sets of structures 

produced are EOF’s and Principle Components (PC), as the structure dimension and 

time dimension. Both PC’s and EOF’s are orthogonal in their dimensions. The 

maximum amount of variance was used to explain the orthogonality (i.e. the lack of 

correlation in time) that makes the PC’s very efficient and suitable for analysis of the 

variability. To consider the rotation of eigenvectors, the Varimax method was 

adopted to preserve the orthogonality. It also, provides more physically explainable 

variability patterns than other methods.  The results showed that the variation in EOF 

loading across the study area suggested differences in variability driving forces at a 

regional scale.  

2.4.1.2 Coefficient of variation (CV) 

CV is the ratio of the SD to mean. While analyzing variability, Wei et al., (2016) 

emphasized the use of CV for its scale invariant properties, compared to the standard 

deviation or variance. CV is computed from equation 2.14 below. 

CV =
SD

X̅
× 100%                                                                                                           (2.14) 

Where, SD is standard deviation and X̅ is the sample mean. A result with a greater 

value of CV indicates larger spatial variability, and vice versa. Key argument 

advanced for applying CV is that it compares well across different quantities and the 

measured level of variability does not change in response to a change in the units of 
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measurement. The disadvantage of the Coefficient of Variation (CV) is that its 

limited to data with non-zero mean, thus standard deviation became a better metric. 

2.4.1.3 Autocorrelation Spectral Analyses (ASA) 

According to Broersen (2006), between two observations, xn and xn+k the 

covariance  is given by the equation 2.15. 

r(k) = cov(xn, xn+k) = E[(xn − μ)(xn+k − μ)] ∀k                                                (2.15)               

The equation above is called the auto covariance function of xn that measures 

covariance between pairs at a distance or lag k, for all values of k, making it a 

function of lag k. The long r(k) function indicates slow data variation and short r(k) 

indicates no correlation (Broersen, 2006).  

2.4.1.4 Quantile Perturbation Method (QPM) 

The QPM (Ntegeka and Willems, 2008) can be applied  to investigate historical 

changes in ranked extremes. The method combines frequency and perturbation in 

extremes (Nyeko-Ogiramoi et al., 2013).  

2.4.1.5 CSD 

The CSD method produced by Onyutha (2016a, b, c, d) considered two ways of 

testing for variability, the application of variability statistics and analyses of sub-

trends in terms of graphs. Graphical identification of the significance of sub-trends 
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may be subjective. Thus, there is a need for a statistical CSD test for conclusiveness 

(Onyutha, 2016c). The advantage of CSD method is that it is rank-based. 

Statistically, the rank difference, 𝑎𝑖 in equation 2.8 can be used to detect both trend 

and variability (Onyutha, 2018). Assessment of variability can be done by testing the 

null hypothesis 𝐻0(natural randomness) as presented in the following procedure.  

Consider 𝛽 as the number of times when 𝑎𝑖−1 > 0 and 𝑎𝑖 < 0 for 2 ≤ 𝑖 ≤ 𝑛; 𝛾 as the 

number of times when 𝑎𝑖−1 < 0 and 𝑎𝑖 > 0 for 2 ≤ 𝑖 ≤ 𝑛  and let’s take 𝛿 = 𝛽 + 𝛾 

(Onyutha, 2018). The distribution of 𝛿 is almost normal with the mean and variance 

given by [2−1 × (𝑛 − 1)] and [4−1 × (𝑛 − 1)], respectively. If the probability (𝑝) 

value is computed using the 𝑧 statistics given by [(𝑛 − 1)−0.5 × |(1 − 𝑛 + 2𝛿)|] is 

less than or equal to α, the 𝐻0 is rejected; otherwise 𝐻0 is not rejected (Onyutha, 

2018). 

2.4.2 Relevant past studies on variability 

Several studies analyzed variability in climatic conditions across Uganda. These 

include; Nyeko-Ogiramoi et al., (2013); Onyuth (2016a); Onyutha et al., (2020); 

Mubialiwo et al., (2020); Mubialiwo et al., (2021); Kilama Luwa et al. (2021); 

Onyutha (2015); Onyutha (2018); Egeru et al. (2014) and Nsubuga et al. (2013). 

In Nyeko-Ogiramoi et al., (2013), QPM was used to address the concern of the 

driver(s) which influence variability in hydro-meteorological extremes on selected 

climate indices. The result indicated that AMO resonate negatively with extremes in 
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rainfall within the L. Victoria basin. The trends of the IOD anomalies indicated 

strong correlation between rainfall extremes.  

In Egeru et al. (2014), climate variability was determined using CV. The result 

showed the region had high spatial variation in rainfall, estimated at 35%, with both 

extreme dryness and wetness across the region. 

Study conducted by Kilama Luwa et al. (2021) on variability and trends of rainfall, 

temperature (1981-2015) and river flow (1998-2015) in Sipi sub catchment on the 

slopes of Mount Elgon in Uganda, assessed variability using the coefficient of 

variation. Observed rainfall and temperature data was obtained from UNMA. The 

result indicated an increase in extreme dry events in the post 2000 years compared to 

pre 2000 period. This seems to indicate that the sub catchment has become prone to 

the extreme dry condition in the recent years, compared to the past and projects a 

future with high risk to livelihood. 

Mubialiwo et al. (2020) studied variability using non-parametric method that was 

based on the CSD approach. A gridded (0.25° × 0.25°) Princeton Global Forcing 

(PGF) data from 1948-2016 was used for its high spatial and temporal resolution. 

The spatiotemporal variability of rainfall was explained in terms of oscillation highs 

(OHs), indicating a variable being higher than the long term mean and oscillation 

lows (OLs), for a variable below the long term mean. The result showed that the 

entire catchment experienced both insignificant OH and OL with weak frequency 

fluctuations at the annual level. Similarly, evapotranspiration indicated significant 

OH in the north and southeast of the catchment.  
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Nsubuga et al. (2013) analyzed mid twentieth century rainfall trends and variability 

over southwestern Uganda, specifically AWMZ and VWMZ. Monthly observed 

rainfall data recorded at 58 stations were obtained from Uganda’s Meteorology 

Department covering 1943-1977. Linear regression method was applied to estimate a 

value of a function between two unknowns. The study established inter-annual 

variability of each station using the mean of CV. The result indicated that rainfall did 

not vary greatly from one year to another with an average of 19%. According to De 

Luis et al. (2000) and Türkeş (1996) study, areas with CV higher than 30% is likely 

to have frequent and severe drought and flood.  

Mubialiwo et al. (2021) analyzed trends in precipitation over catchments within the 

KWMZ. The study obtained PGF long term gridded daily precipitation, minimum 

and maximum temperature data (1948-2016) of high resolution (0.25° × 0.25°) over 

Lokok and Lokere catchments. Variability was analyzed using the CSD approach. 

The result showed that the catchments were characteristically different with 

insignificant variation in time considering the annual time scale. There was 

significant OL in the northern part, while the rest of the catchments experienced both 

OL and OH in the June, July and August (JJA) season. The study applied un 

calibrated empirical Hargreaves method to approximate PET which could have 

biased the result and thus, recommended use of more than one method in the 

estimation of PET in a future study. 

Onyutha (2016a) applied EOF to daily rainfall extracted from high resolution (0.5° × 

0.5°) gridded PGF, covering the period 1948-2008. PGF data has been used in 
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various studies (Zeng and Cai, 2016 and Hoell et al., 2015). The result showed OH in 

the mid, 1950’s, late 1960’s, 1990’s and early 2000’s, while the period around 1970 

and late 1980’s exhibited OL in terms of temporal variability. Spatially, areas around 

Lake Victoria, southwestern Uganda and south of KWMZ exhibited positive 

variation, while areas around Lake Albert and north eastern Uganda, showed 

negative variation. The study recommended an update of this finding in future using 

long term observed data when available or if the bias in the rainfall reanalysis 

datasets reduces tremendously. 

Onyutha et al., (2020) computed precipitation variability in terms of sub-trends based 

standardized trend statistics using CSD approach (Onyutha, 2018). The study used 

monthly gridded (0.3° × 0.3°) precipitation data of CenTrend v1.0 over the selected 

period 1961-2015 and daily minimum(𝑇𝑚𝑖𝑛) and maximum (𝑇𝑚𝑎𝑥) gridded (0.5° × 

0.5°) temperature PGF data that covered the period from 1948-2008, but used 1961 

to 2008 for this study. Observed daily and monthly rainfall data from 1961 to 2000 

was obtained from UNMA for Bugaya and Ivukula stations. The result showed both 

precipitation and PET exhibited negative and positive sub-trends in a temporally 

clustered way. PET varied positively in the early 1960s and 1990s, while a decrease 

was noted in precipitation over the same period. 

Onyutha (2015) determined temporal variability through the nonparametric 

aggregation of rescaled series in terms of the difference between the exceedance and 

non exceedance of the data counts based on non-parametric anomaly indicator. 

Monthly rainfall data covering the period 1901 to 2011 was obtained from the British 
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Atmospheric Data Centre (BADC). The finding indicated Uganda with above 

average rainfall in the 1960s to early 1980s, with a significant jump in the Lake 

Victoria basin in terms of temporal variability.  

Ongoma et al. (2016) applied Sequential Mann Kendall to show variability in total 

precipitation over Uganda and Kenya. The indices considered are wet days(𝑅 ≥

1mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity 

index (SDII), heavy precipitation days(𝑅 ≥ 10mm), very heavy precipitation days 

(𝑅 ≥ 20mm) and severe precipitation(𝑅 ≥ 50mm). Daily rainfall data was used in 

the computation of the indices. For Uganda, 12 stations data was obtained from 

UNMA for the period 1980-2010. The result showed generally an increase in the 

number of wet days over Uganda. This increase however, was found to be 

insignificant at 5% significant level in all the stations. The research further 

established a reduction in a number of heavy rainy days, explaining a possible 

increase in dry condition across the area. The study recommended undertaking 

similar research, while utilizing long term observed data to avoid generalization of 

the outcome of the result found here. 

2.5 Computation of potential evapotranspiration 

Various methods are used to estimate PET. These include, FAO Penman Monteith 

(Allen et al., 1998), based on energy mass balance; Thornthwaite (Thornthwaite, 

1948); Hamon (Hamon, 1963); Hargreaves-Samani (Hargreaves, 1975; Hargreaves 

and Samani, 1982; Hargreaves and Samani, 1985) temperature based; empirical 

methods such as Priestley-Tylor (Priestley and Taylor, 1972); Turc (Turc, 1961) and 
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Makkink (Makkink, 1957), based on radiation; artificial neural networks (Penman, 

1948). Mathematical detail in regards to these methods, refer to Jensen, Burman and 

Allen (1990); Wright (1985); Federer, Vörösmarty and Fekete (1996); Vörösmarty, 

Federer and Schloss (1998) and Lu (2002) or citations in the original method.  

While FAO Penman-Monteith is widely used to evaluate PET, it requires a lot of 

variables such as wind speed, solar radiation, relative humidity and many more. 

Conversely, the Hargreaves method uses only minimum and maximum temperature 

in the estimation of PET. This makes it easy to use in areas with less data on climate 

elements and less affected with data from arid or semiarid, un irrigated area than 

Penman-Monteith method (Hargreaves and Allen, 2003). 

In a study on implications of PET methods for stream flow estimations under 

changing climatic conditions, Seong, Sridhar and Billah (2018) compared five 

various methods to estimate PET. These included Hamon (Hamon, 1963); 

Hargreaves (Hargraves and Samani, 1982); Thornthwaite (Thornthwaite, 1948); 

Priestley-Taylor (Priestley and Taylor, 1972) and Penman-Montieth (Allen et al., 

1998). The result established that Hargreaves and Penman-Monteith derived similar 

values in terms of PET when applied to the Susquehanna watershed across 

Pennsylvania, New York and Maryland States. 

2.6 Validation of datasets 

Due to scarcity of data as a result of few meteorological stations, reanalysis data 

provides opportunity for easy access of daily time scale at each location (Mubialiwo 
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et al., 2020). However, this reanalysis data may not be accurate. For deeper insight in 

to reliability of analysis based on reanalysis data, there is need for validation of 

result. Data from a particular ground station is picked and compared with reanalysis 

data from the same location to determine accuracy of results. 

Several studies conducted validation of reanalysis and/or satellite precipitation in 

Uganda. These include; Mubialiwo et al. (2021); Mubialiwo et al. (2020); Ongoma 

and Chen (2017); Ongoma et al. (2018); Ongoma et al. (2019) and Ayugi et al. 

(2020). 

Various methods have been used to validate satellite based reanalysis data with 

observed ground data. For instance Mubialiwo et al. (2021) used correlation 

coefficient and presented result both statistically and graphically. The 𝐻0 (no 

correlation) test was applied to test for significance level 𝛼 of 5%. 

Several methods tend to be used for evaluating performance of satellite data such 

root mean squared error (RMSE), percentage (PBIAS), correlation coefficient (r), 

standard deviation, and model estimation bias (BIAS). One example of a study which 

applied this methods is Ongoma et al. (2019).  

Furthermore, to quantitatively evaluate the data quality of different precipitation 

products, Wang et al. (2020) used statistical evaluation to compare the model’s 

performance amongst reanalysis and simulated precipitation. These methods 

included correlation coefficient (CC), mean bias error (MBE), and root mean square 

difference (RMSD).  
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Other studies on validation of reanalysis data set includes Ayugi et al. (2020) who 

employed three statistical evaluation techniques to compare model’s performance 

over East Africa. They included CC, RMSD and MBE. The equations for these 

metrics are shown in equation 2.16. 

MBE =
𝐼

𝑛
∑ (𝑀𝑖 − 𝑂𝑖

𝑛

𝑘−1
)                                                                                     (2.16) 

Where M and O are reanalysis and observed values, respectively. 

2.6.1 Methods of quantifying mismatch among datasets 

2.6.1.1 Root Mean Squared Error (RMSE) 

RMSE is expressed as 

𝑅SME = √
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)

2
𝑁

𝑘−1
                                                                           (2.17) 

2.6.1.2 Pearson product-moment correlation coefficient 

The formula for r can be given by. 

𝑟 =
∑ (𝑂𝑖 − 𝑂̅1)(𝑀𝑖 − 𝑀̅1)
𝑛
𝑘=1

√∑ (𝑂𝑖 − 𝑂̅1)
2∑ (𝑀𝑖 − 𝑀̅1)

2𝑛
𝑘−1

𝑛
𝑘−1

                                                        (2.18) 

Where R and O are reanalysis and observed values, respectively. 𝑖 refers to the 

reanalysis and observed pairs, n is the number of observations of the rainfall. 
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2.6.1.3 PBIAS 

According to Gupta et al., (1999), PBIAS,  also termed relative bias (RE) is given by 

𝑃𝐵𝐴𝐼𝑆(%) =
∑ (𝑅𝑖 − 𝑂𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

100%                                                                            (2.19) 

2.6.1.4 Standard deviation 

The standard deviation summarizes the probable distribution in terms of space, 

which is important in identifying regions with varying variable uncertainty, 

especially when predicting weather. Variability is important to understand changes in 

water resources (Nsubuga et al., 2013). The greater the variability, the more 

expensive and difficult management of water resources becomes. 

2.7 Past studies on drought in Uganda 

Drought is tends to affect sensitive sectors of the economy, such as production 

(Najjuma et al., 2021). Several studies have been conducted in Uganda on drought. 

Some of these studies include; Najjuma et al. (2021); Nakalembe (2018); Mukasa 

(2020); Twongyirwe et al. (2019);  Iwadra et al. (2020); Epule et al.(2017); Nsobya 

(2019); Lwasa (2018); Bernard et al. (2013): Damalie et al., (2017); Mfitumukiza, 

Barasa and Ntale (2017); Nkuba et al. (2020); Alex, Jesse and Neoline (2019); 

Hassan  (2019); Kalisa et al. (2020); Jury (2018) and Hao et al. (2021). 

For instance, Nakalembe (2018) characterized agricultural drought in the Karamoja 

using the historical rainfall data (1960-2012) from UNMA to compute SPI at 1, 3, 6, 
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9 and 12 month time scale. The challenge with use of SPI in the Karamoja region 

was limited climatic data from the stations. However, the result found out that 1965 

was the year the region experienced the worst drought. The study then recommended 

a continuous assessment of drought while providing detail in order to regulate 

dissemination of inaccurate information. 

Kalisa et al. (2020) analyzed drought using precipitation data set from Climate 

Research Unit (CRU). The study adopted Haroon, Zhang and Yao (2016) method to 

compute standardized precipitation index SPI (McKee, Doesken and Kleist, 1993),. 

The SPI-12 showed a dry spell over the Country from 1920 to 2004 and a much 

wetter period over the last one and half decade, with considerable decrease in dry and 

wet period at longer timescale. 

Jury (2018) in a study on warm spells on the East African plateau and impacts in the 

White Nile basin, which included Uganda, used daily maximum temperature 

reanalysis data from Berkeley and the European Centre for Medium – Range 

Weather Forecasts (ECMWF). The result indicated a decrease in rainfall-

evapotranspiration ratio from > 100% to ~70% during the study period (2004-

2007) with water deficit in the same period. Though the study projected an increase 

in maximum temperature to +2℃ by end of the 21st century, the length of the dry 

season was expected to reduce. 

Hao et al. (2021) used Global Land Data Assimilation System Noah Land Surface 

Model L4 monthly 0.25° × 0.25° Version 2.1 (GLDAS_NOAH025_M_V2.1) and 

TRMM for computation of PET and subsequently SPEI respectively. The study 
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estimated SPEI and vegetation condition index (VCI) in assessment of the dry 

climatic condition on an annual spatial distribution. The finding of an average annual 

SPEI distribution indicated a very moderate drought behavior in the basin during the 

study period (2003 -2016).  

Najjuma et al. (2021) used Climate Hazards Group Infra-Red Precipitation with 

Station data (CHIRPS) rainfall and Regional Atmospheric Climate Model 

(RACMO22T) data to analyzed drought in Mubende and Bukomansimbi districts. 

The historical rainfall observation was provided by CHIRPS with a blend from 

ground station data (Funk et al., 2015). The observed rainfall data for both districts 

were obtained for a period of 38 years (1981-2018). The projected monthly rainfall 

data set was obtained from the model output of version 2.2 of the RACMO22T 

(Meijgaard et al., 2008), considered a very skillful model over Uganda (Kisembe et 

al., 2019). The study categorized drought events using a 12-month SPI, based on 

statistics described by McKee, Doesken and Kleist (1993). The result showed 

extreme severe drought events from 2004 to 2008 with generally, a slight increase in 

drought trend in both Bukamansimbi (severe drought, SPI = -1.76 in 2021) and 

Mubende (extreme drought events, SPI = -2.66in 2026) districts. 

Kyatengerwa, Kim and Choi (2020) applied  climate reanalysis data (1984 - 2017) 

from NASA World Wide Energy Resource (POWER) project system to analyze 

drought across Uganda. The study computed Standardized Evapotranspiration Deficit 

Index (SEDI) and SPI (for comparison with SEDI) to identify and analyze drought 

using five time scales (1, 3, 6, 9 and 12 months). The result showed that the central 
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and north western Uganda was likely to become drier, while the north east and south 

west could become wetter. Notably, areas with negative trend constituted 75% of the 

Country. Nsubuga et al. (2013) demonstrated that a significant decrease in rainfall 

was associated with an increase in inter-annual variability within the “dry corridor” 

of Uganda. 

2.7.1 Methods for analysis of drought index 

2.7.1.1 Standard Precipitation Index (SPI) 

The SPI (McKee et., 1993) it is a tool used for drought monitoring which is based 

only on rainfall data (Haroon et al., 2016). The index which can have both positive 

and negative values as a measure of wet and dry conditions, have been statistically 

described by McKee et al. (1993b) as a deviation from the mean value, normalized 

by the standard deviation of the entire range of data records. The negative values are 

normally the focus since they represent the drought events. The weakness of SPI is 

that precipitation is the only input data and values based on this climatic variable in 

long-term may change (McKee et., 1993).  

2.7.1.2 Standard Precipitation and Evapotranspiration Index (SPEI) 

The SPEI is computed using the precipitation and PET to delineate the phases of the 

anomaly of dry and wet conditions by normalizing the alteration among precipitation 

(water supply) and evapotranspiration (demand) (Ayugi et al., 2020). Both SPEI and 

SPI (McKee et al., 1993) are similar, except the SPEI includes PET and employs 

various schemes to derive the PET. Similar to SPI, a negative value indicate dry 
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condition, while a positive value depict wet condition. For example, the drought 

events are divided in to four main classes, as; extreme (SPEI≤ -2.00), severe (-1.50 

SPEI > SPEI > -1.99), moderate (-1.00 > SPEI > 1.49), and mild (0 > SPEI > -

0.99). Similarly, wet events with the same but positive values. 

2.7.1.3 Palmer Drought Severity Index (PDSI 

PDSI is one of the most used drought indices for monitoring and studying the surface 

areal extent of drought severity  (Yihdego et al., 2019). This index was developed by 

Wayne Palmer (Palmer, 1965) and it is calculated using precipitation, temperature 

and soil moisture data. It was largely designed as an agricultural drought index to 

measure moisture content using water balance equation. PDSI uses temperature, 

precipitation and soil moisture in its computation. 
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2.7.1.4 Other methods for analysis of drought indices 

Over the years several methods have been developed to analyze drought. Detail of 

each methods highlighted  can be obtained from the references as cited; Drought 

Severity Index (DSI) (Mu et al., 2013); SNIPE, PALMER. Several studies have 

indicated that no single drought index (DI) can precisely and comprehensively 

represent and/or evaluate dry situation (Yihdego et al., 2019). To address this, 

various studies recommend use of different methods and approaches.  

2.8 Chapter summary 

The discussion in this chapter draws on the findings of previous studies undertaken 

in the same field. Review of trends and variability in precipitation and 

evapotranspiration, as factors that influence change in climatic condition were all 

investigated under different studies. 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 Introduction 

This chapter provided the context for the study methodology and guidance on the 

study area, the kind of data that were required for the completion of research and the 

selection of methods for data analysis. 

3.2 Study area and data 

3.2.1 Study area 

 

Figure 3.1: Study area map showing the four Water Management Zones of Uganda 
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Figure 3.1 shows Uganda’s location with a total surface area covering 236040 km2. 

Hydrologically, the country was delineated in to four WMZs, which include Albert, 

Victoria, Kyoga and Upper Nile WMZs. Salient features of Uganda’s hydrology 

include the freshwater lakes and rivers with warm tropical climate. The present study 

was to investigate the changes in climatic dry conditions focused on the four WMZs 

in Uganda. 

3.2.2 Sources of data used in the study 

Datasets were got from various. Observed data from selected stations across the 

WMZs were obtained from Uganda UNMA, for the purpose of the validation 

exercise. 

 Table 3. 1: Observed station locations across the WMZs 

SNo Station Name Station No. 

Coordinates  (degree) 

Longitude Latitude 

1 Wadelai Station 873310150 31.40 2.73 

2 Gulu Station 87320000 32.28 2.78 

3 Masindi Station 88310030 31.72 1.68 

4 Kassanda  Station 89310080 31.68 0.45 

5 Serere Station 88330040 33.45 1.52 

6 Soroti Station 88330060 33.62 1.72 

7 Masaka Forest Station 90310040 31.73 -0.33 

8 Nkozi  Experimental Farm Station 90320010 32.02 0.02 
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3.2.2.1 Precipitation  

Gridded high resolution (0.3° x 0.3°) Climate Forecast System Reanalysis (CSFR) 

precipitation and temperature daily time series data were used in this research study. 

The gridded data from 437 locations spanned over a period covering the year 1979 – 

2013 and was downloaded from https://globalweather.tamu.edu/data/cfsr/.  

3.2.2.2 Temperature 

Mean daily minimum (Tmin) and maximum (Tmax) temperature data from 1979-2013 

was obtained from CSFR high resolution (0.3° × 0.3°). This was used in the 

computation of PET. 

3.2.2.3 Potential evapotranspiration (PET) 

The study computed PET0 from Tmin and Tmax (1979-2013) using Hargreaves 

(Hargreaves, 1975; Hargraves and Samani, 1982; Hargreaves and Samani, 1985) 

method, as presented in the equations 3.1 and 3.2 below. 

𝑃𝐸𝑇 = 0.0023𝑅𝑎[𝑇𝑚𝑎𝑥 + 17.8]𝑇𝑟
0.5                                                                      (3.1) 

𝑇𝑟 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛                                                                                                          (3.2) 

Where; 

Tmax = Mean daily maximum temperature (°C) 

Tmin = Mean daily minimum temperature (°C) 

https://globalweather.tamu.edu/data/cfsr/
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Tr = Mean maximum daily temperature minus mean minimum daily temperature, 

equation 3.2 

Ra = Extraterrestrial radiation, which is given by the equation 3.3 below; 

𝑅𝑎 =  15.392𝑑𝑟(𝑤𝑠𝑠𝑖𝑛∅𝑠𝑖𝑛𝛼 + 𝑐𝑜𝑠∅𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝑤𝑠)                                                     (3.3)  

Where, 

Ra = is the water equivalent of extraterrestrial radiation [mmday-1] 

dr = the relative distance between the earth and the sun 

𝑤𝑠 = the sunset hour angle (radians) 

∅ = the latitude (rad) of site (+ for Northern Hemisphere, - for Southern Hemisphere) 

𝛼 =  Solar declination angle (rad) 

3.2.3 Climate indices 

Large-scale ocean-atmosphere condition data (AMO, IOD, Nino3 and QBO) were 

considered for attribution.  

3.2.3.1 Atlantic Multi-decal Oscillation (AMO) 

The AMO index is the area weighted average Sea Surface Temperature (SST) of the 

Atlantic Ocean from latitude 0°N to 70°N (Douglass, 2018). The AMO index values 

are monthly values of the area weighted SST from the equator to 70°N. The data 

range from 1856 to the present (Douglass, 2018). The AMO index was downloaded 
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from National Oceanic and Atmospheric Administration (NOAA) (refer to 

https://www.esrl.noaa.gov/psd/data/timeseries/AMO/) (accessed: 20th February, 

2021). 

3.2.3.2 Indian Ocean Dipole (IOD) 

The IOD index is the climate mode associated with the state of Sea Surface 

Temperature (SST) over western equatorial and southeastern Indian Ocean. The 1997 

IOD mode was greatly associated with severe flood in Eastern Africa and droughts 

over Indonesia (Li et al., 2003). The observed monthly SST fields covered the 

tropical IOD (30°S - 30°N, 40° - 110°E) and climatological fields elsewhere. The 

monthly time series data in this case was accessed online via website of National 

Oceanic and Atmospheric Administration (NOAA) from 1979 to 2013 via, 

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C

1961-2015/.iod/index.html (20th February, 2021). 

3.2.3.3 Niño3 

The Niño3 index is a large climate index defined as average Sea Surface 

Temperature (SST) over the Pacific Ocean. The data were obtained online from 

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino3/index.html(accessed: 

20th February, 2021). 

https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C1961-2015/.iod/index.html
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C1961-2015/.iod/index.html
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino3/index.html
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3.2.3.4 Quasi-Biennial Oscillation (QBO) 

The Quasi – Biennial Oscillation (QBO) is a meteorological term to specify the 

equatorial stratospheric oscillation (Maruyama, 1997). The region of the stratosphere 

is between 17km to nearly 60km over the equator and the QBO is more dominant in 

the lower tropical stratosphere close to the equator (Baldwin et al., 2001). The QBO 

was downloaded via https://www.daculaweather.com/4_qbo_index.php (accessed: 

20th February, 2021) and covered the period from 1979 – 2013. 

3.2.4 Extreme climatic indices 

The extreme climatic indices selected for investigation of dry condition across the 

WMZ’s included those of rainfall and evapotranspiration. The rainfall indices 

considered were NDD1, NDD5, CDD1 and CDD5, while PET indices included, 

NDPET5, NDPET10, CDPET5, CDPET10, SPETD5 and SPETD10. 

NDD and CDD per annum were extracted for rainfall less than 1mm (NDD1 and 

CDD1) and 5mm (NDD5 and CDD5). NDD1 and NDD5 explain a characteristic 

condition of extreme dryness.  Similarly, CDD explain an accumulated precipitation 

of less than a given threshold (1mm and 5mm) over a specified period. It is a good 

index that indicates a risk of inadequate water supply especially in an irrigation area. 

In this case, an annual time scope was considered for all the rainfall and PET indices. 

The lower thresholds (1 and 5 mm/d) were selected to characterize dryness over the 

catchment in a defined period of time. This is because dry condition reduces water 

availability for crop yields for instance and other demand in the catchment. 
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The PET indices (NDPET, CDPET and SPETD) indicate the dominant loss of water 

within a particular catchment and describe the limitation of water availability. In this 

case, a predetermined threshold (𝑃𝐸𝑇 < 5𝑚𝑚 𝑑 𝑎𝑛𝑑 10𝑚𝑚 𝑑)⁄⁄  was set for each 

indices. 

3.3 Research design 

The study used a quantitative method in investigating changes in climatic dry 

condition across the WMZs. Analysis adopted a descriptive approach to establish the 

relationship between multi-decadal co-variability in extreme climatic indices with 

changes in large- scale ocean-atmosphere conditions. In the detection of changes in 

the extreme climatic indices and characterization of climatic conditions, the study 

used both statistical and graphical techniques to analyze changes in trend and 

variability as described in Figure 3.2.   
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Figure 3.2: Methodological framework 
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3.4 Research Approach 

The study used quantitative research approach to analyze the changes in climatic 

indices in terms of trend direction and slope and the variability across the WMZs. 

Correlation of large-scale ocean-atmosphere condition with the indices was also 

considered in this approach. 

3.5 Methods 

3.5.1 Analysis of trend 

Trend slope (m) was computed using Theil, (1950) and Sen, (1968). The significance 

of m was assessed by testing the H0 (no trend) using CSD method (Onyutha, 2021). 

For a given dataset X of sample size n, X was re-scaled into series dx ( equation 3.4) 

in terms of   

   𝑑𝑥,𝑗 = 𝑛 − 𝑤𝑥,𝑗 − 2𝑡𝑥,𝑖  for   1 ≤ 𝑖 ≤ 𝑛                                                         (3.4) 

where, tx,i denotes the number of times the ith observation exceeds other data points in 

X . In the same line, wx,i refers to number of times the ith data point appears within X. 

The trend statistic T was computed using equation 3.5 below.

  

 

,1 1

n j

x ij i
T e

 
                                                                          (3.5) 
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The mean of T is zero and for large n the distribution of T is approximately normal 

with the variance of T given by Onyutha, (2021) in equation 3.6 below. 

  

 
 2 1

.
12




n n
V T                                                                              (3.6) 

For data which follow the fractional Gaussian noise, V(T) taking into account the 

correction from the effect of persistence, can be denoted as  cV T such that the 

computation is performed using equation 3.7.  

  

   cV T V T n                                                                    (3.7) 

Where,  𝛾 and 𝜂 are computed using equation 3.8 and 3.9 below; 

      

4 3 21.4784 0.5094 3.9455 0.8312 1.4174Est Est Est EstH H H + H +          (3.8) 

      

4 3 20.4512 0.4057 1.9193  4.237 0.6144Est Est Est EstH H H H        
        

(3.9) 

and EstH is the sample scaling. The standardized test statistic Z is given by Onyutha 

(2021) in equation 3.10 below. 

 c

T
Z   

V T
                                                              (3.10) 

Consider Zα/2 as the standard normal variate at the selected α. The H0 (no trend) is 

rejected for /2Z Z . Otherwise the H0 is not rejected at α. In this study, α was 
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taken as 0.05. This method can be found implemented in a tool called CSD-VAT 

(Onyutha, 2021) which is available via https://sites.google.com/site/conyutha/tools-

to-download (accessed: 25th April, 2021).  The trend test was applied to the extreme 

climatic index at each grid point. A result of the trends across the various WMZs was 

obtained through spatial interpolation in ArcGIS 10.1 version. 

3.5.2 Variability analysis 

Variability was analyzed by testing the H0 (natural randomness) in each extreme 

climatic index. For dataset X, with a subset x from the ath to the bth value of X, a 

standardized trend statistic Z based on time slice moved from the beginning to the 

end of the series was computed in an overlapping way. For a selected t, i considered 

another term  0.5 1t    and 0.5 t    in cases where t is odd and even, 

respectively. Sub-trends were computed using in equation 3.11 below. 

   | for 1, 2,
t

j a bZ f x X x x x     j =   ...., n                                            (3.11) 

Where; 

 Zj is the jth value of Z, and the terms a and b are all based on j and can be given by 

equation 3.12 below.   

 

 

if , 1, 1

if and , 1,

if and , 1,

j    a   b t j

j  j n    a j   b j  

j n  j n   a j   b n

 

   

 

     


        


       

     (3.12) 

https://sites.google.com/site/conyutha/tools-to-download
https://sites.google.com/site/conyutha/tools-to-download
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To test the H0 (natural randomness),  100 1 %
 
confidence interval limits (CILs) 

on the variability was constructed using ±Zα/2 after plotting Zj against the 

corresponding jth data year. The H0 (natural randomness) was rejected for values of Z 

outside the CILs. Otherwise, the H0 (natural randomness) was not rejected.  

3.5.3 Correlation analysis 

The relationship between variation in large-scale ocean-atmosphere indicators 

(AMO, Niño 3, IOD, and QBO) and the extracted extreme precipitation and PET 

indices included NDD1, NDD5, CDD1, CDD5, NDPET5, NDPET10, CDPET5, 

CDPET10, SPETD5 and SPETD10 were obtained using correlation analysis. The 

indices were extracted from the daily time series and converted on annual basis. The 

large-scale Ocean-atmosphere condition represented by the climate indices (AMO, 

IOD, Niño3 and QBO) were obtained online and converted also into annual time 

series for the equivalent study period of 35 years.  

Computation of sub-trends was executed using 35-year time scale from precipitation 

and PET. The H0 (no correlation) was tested for coefficient of correlation and if the 

computed value was outside the critical value of the Pearson correlation, the H0 (no 

correlation) was not rejected at the selected α; otherwise, the H0 (no correlation) was 

rejected. A two-tailed hypothesis test was used with a critical correlation value at α = 

0.05 as 0.27. 
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3.5.4 Characterization of climatic condition   

In this study, the annual mean and standard deviation of the extracted rainfall and 

evapotranspiration indices were selected to characterize climatic condition based on 

the extreme climatic indices through spatial interpolation in ArcGIS 10.1 version. 

The mean and standard deviation were computed based on the long term 

precipitation and temperature (for calculation of PET) obtained from gridded CFSR 

high resolution data records. In doing so, i was able to understand the characteristic 

dryness of areas and their distribution across the WMZs. 

3.5.5 Extraction of extreme climatic indices  

This was achieved through identification of indices for precipitation and 

evapotranspiration that included NDD1, NDD5, CDD1, CDD5, NDPET5, 

NDPET10, CDPET5, CDPET10, SPETD5 and SPETD10. The extraction of these 

indices from 35 years data series were executed using MATLAB software. The 

indices extracted were to diagnose the dry condition of the WMZs in Uganda. 

Table 3.2: Considered indices 

S/N Extreme precipitation and PET indices Notation 

1.  Maximum consecutive dry days with rainfall <1mm CDD1 

2.  Maximum consecutive dry days with rainfall <5mm CDD5 

3.  Number of dry days with rainfall < 1mm NDD1 

4.  Number of dry days with rainfall < 5mm NDD5 

5.  Number of days with potential evapotranspiration >5mm NDPET5 
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S/N Extreme precipitation and PET indices Notation 

6.  Number of days with potential evapotranspiration >10mm NDPET10 

7.  Maximum number of consecutive days with PET >5mm CDPET5 

8.  Maximum number of consecutive days with PET >10mm CDPET10 

9.  Sum of PET for days with PET >5mm SPETD5 

10.  Sum of PET for days with PET >10mm SPETD10 

 

3.6 Validation of extreme precipitation indices 

Extreme precipitation indices extracted from the high resolution gridded CFSR daily 

data was validated (using data from eight stations) with those obtained from ground 

based dataset. This was executed using the method applied in recent studies by 

Mubialiwo et al., (2021), Ngoma et al. (2021) and Onyutha et al. (2021). Due to the 

missing daily records in some stations during 1979-2013, the validation periods were 

reduced to cover the period from 1979 to 2009 for all stations. Two methods of 

RSME and Pearson product-moment correlation coefficient (r) in equations 2.17 and 

2.18, respectively, were used to validate the two datasets.   

Many research studies employed these metrics to evaluate performance of time series 

datasets of climate variables (Ayugi et al., 2020; Ngoma et al., 2021). The 

similarities of the two datasets were statistically compared. 
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3.7 Ethics  

The research was conducted with strict observance of the University guidelines. Data 

acquisition followed the required procedure of the source providers and recognition 

of authors as referenced in this report eliminated plagiarism. 

3.8 Chapter summary 

This chapter presented the geographical extent of the study area including data 

sources for the study, methods and analytical tools. Different methods and techniques 

for data collection and analysis were used. The next chapter presents the results 

based on analysis conducted using methods identified in this chapter. 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1 Introduction 

The results from the research are presented under this chapter, in line with set 

specific objectives. Results are also discussed in this section. 

4.2 Characteristics of extreme climatic conditions 

4.2.1 Long – term mean climatic conditions 

Figure 4.1 indicates the annual mean of the extreme climatic indices across the four 

WMZs. NDD1 showed high long term mean in the north east (Karamoja) of the 

country, a region known for its aridity and North West of AWMZ (Figure 4.1a). 

Similarly, as the threshold was increased from 1mm to 5mm, the spatial area with 

high mean values of NDD5 also increased, covering the Albertine rift and north 

eastern region (Figure 4.1b). Karamoja and north east of the study area showed high 

mean of both CDD1 and CDD5 (Figure 4.1c, d). However, areas around Mt 

Rwenzori, Mt Elgon, Mt Mufumbira and south of Lake Kyoga showed low mean for 

both NDD1 and NDD5 respectively (Figure 4.1a, b). Low mean values for both 

CDD1 and CDD5 concentrated more to the east of AWMZ, southern KWMZ, north 

east of VWMZ, and Mt Rwenzori region (Figure 4.1c, d). Nearly the entire country 

exhibited high mean values for NDPET5 (Figure 4.1e), except for Lake Victoria, that 

showed low mean for both NDPET5 and NDPET10 (Figure 4.1e, f). The low mean 

value of NDPET in L. Victoria was attributed to lack of contribution from land 

surface evaporation and plant transpiration. With increased threshold from 5mm to 
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10mm (Figure 4.1f), the area having high mean values of NDPET10 were confined 

to northern part of Mt Elgon and Albertine rift. Similarly, Figure 4.1g & h, indicated 

Karamoja and Albertine rift region as having the highest mean for both CDPET5 and 

CDPET10. As in (Figure 4.1e, f), Lake Victoria showed low mean values of CDPET 

(Figure 4.1g, h). High mean values for SPETD5, were observed in Albertine rift up 

to west Nile, north east of the country (Figure 4.1i). Generally, KWMZ exhibited the 

highest mean values of NDD1, NDD5, CDD5, NDPET10, CDPET5, CDPET10, 

SPETD5 and SPETD10 followed by UNWMZ (Table 4.1). This shows that KWMZ 

is characteristically, drier than all the other WMZs. This result agrees with Onyutha, 

et al., (2021) study, that showed UNWMZ and KWMZ were characterized with high 

PET, especially in the north eastern part of the KWMZ. With such result, scarcity of 

water could be a threat to agricultural productivity. Sustainable measures are 

required to conserve water for various use in the WMZs. VWMZ showed lowest 

long term average values of NDD1, CDD1, NDPET5, CDPET5, CDPET10, SPETD5 

and SPETD10 (Table 4.1). 
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Figure 4.1: Mean a) NDD1, b) NDD5, c) CDD1, d) CDD5, e) NDPET5, f) 

NDPET10, g) CDPET5, h) CDPET10, i) SPETD5, j) SPETD10. 
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Table 4.1: Average values of extreme climatic indices across the four WMZs. 

WMZ 

NDD1 

(days/yr) 

NDD5 

(days/yr) 

CDD1 

(days/yr) 

CDD5 

(days/yr) 

NDPET5 

(days/yr) 

NDPET10 

(days/yr) 

CDPET5 

(days/yr) 

CDPET10 

(days/yr) 

SPETD5 

(mm/yr) 

SPETD10 

(mm/yr) 

AWMZ 237 94 52 94 298 72 55 9 2540 851 

KWMZ 254 317 59 95 323 95 74 13 2878 1116 

UNWMZ 253 312 61 92 326 90 67 12 2850 1059 

VWMZ 233 307 49 94 179 24 28 4 1402 263 

Bold values indicate the highest and lowest mean across the WMZs.
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4.2.2 Long – term mean of spatial variation 

Figure 4.2 shows annual standard deviation of the extreme climatic indices across the 

four WMZs. High spatial variation around long term mean of NDD1 was noticed in 

central and southern part of the country (Figure 4.2a). This presents a situation of 

uncertainty in predictive planning for water resources management. Coincidentally, 

this area exhibited low mean values (Figure 4.1a). However, Karamoja, Lake 

Victoria and Albertine rift region showed low deviation (Figure 4.2a, b). This is 

because of the influence of single PET (evaporation) variable contributing to changes 

in PET indices due to less vegetated land and open water surfaces in the region. Low 

deviation was noticeable in the north and central part of the country, with the south 

projecting high values for both CDD1 and CDD5 (Figure 4.2c, d) respectively. There 

were low standard deviations in NDPET5 values for UNWMZ, KWMZ and L. 

Victoria (Figure 4.2e). Noticeably, higher standard deviation around Mt. Elgon and 

Albertine rift region were observed, with increase in threshold from 5 to 10 (Figure 

4.2f). Almost the entire country, except L. Victoria, exhibited higher standard 

deviation values of CDPET5 (Figure 4.2g). This contrasted with Figure 4.2h, when 

the threshold was increased from 5 to 10, where the entire study area showed low 

deviation. The highest deviation of SPETD5 values (Figure 4.2i) was confined to the 

north of Lake Albert and south western Uganda. With the increase in the threshold 

from 5 to 10, Karamoja and Albertine rift region exhibited higher deviation and Lake 

Victoria, the lowest standard deviation (Figure 4.2j).  
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Figure 4.2: Standard deviation (Stdev) a) NDD1, b) NDD5, c) CDD1, d) CDD5, e) 

NDPET5, f) NDPET10, g) CDPET5, h) CDPET10, i) SPETD5, j) SPETD10. 

Climatic indices for rainfall (NDD1, CDD1 and CDD5) are highly varied in VWMZ, 

except for NDD5 (AWMZ) and this is contrary to PET indices (Table 4.2). UNWMZ 

exhibited the lowest variability in precipitation indices under study and SPETD5 

(Table 4.2). Generally, KWMZ showed high variability in PET indices (Table 4.2). 
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Table 4.2: Average standard deviation of extreme climatic indices across the WMZs. 

WMZs 

NDD1 

(days/year) 

NDD5 

(days/year) 

CDD1 

(days/year) 

CDD5 

(days/year) 

NDPET5 

(days/year) 

NDPET10 

(days/year) 

CDPET5 

(days/year) 

CDPET10 

(days/year) 

SPETD5 

(mm/year) 

SPETD10 

(mm/year) 

AWMZ 47 38 23 40 19 18 19 4 229 220 

KWMZ 42 32 20 32 12 22 23 6 184 265 

UNWMZ 39 31 20 26 10 19 22 5 162 235 

VWMZ 52 33 30 45 18 10 12 2 177 109 

Bold values indicate both high and low average standard deviations across the WMZs.
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4.2.3 Trends 

Figure 4.3 indicates statistical annual trend slope of the extreme climatic indices 

across the four WMZs. Positive trend in both NDD1 and NDD5 were observed in the 

Karamoja and Albertine rift region, and the area expanse increased as the threshold 

was increased from 1mm to 5mm (Figure 4.3a, b). Similarly, CDD1 and CDD5 

showed positive trend variation in UNWMZ as the threshold was increased (Figure 

4.3c, d). This result compares well with Egeru et al., (2017) study in Agago sub 

catchment within UNWMZ, that established increasing drought severity in the recent 

past (after 1990s) despite low intensity.  However, the remaining study area showed 

negative trend. Much of central part of the country and south east of KWMZ 

experienced positive trend compared to the rest of the country that exhibited negative 

trend (Figure 4.3c). With increased threshold from 5mm to 10mm (Figure 4.3d), area 

with positive trend was reduced to south east of KWMZ and North West of the 

country. Both NDPET5 and NDPET10 showed positive trend in south east of 

KWMZ, north east and negative trend for the remaining study area (Figure 4.3e, f). 

Generally, KWMZ experienced a decline in rainfall indices, though a positive trend 

in PET indices with higher threshold (Table 4.3). The extreme rainfall indices result 

agreed Obubu et al., (2021) study, that showed that the zone was climatically wetter 

(1981-2010). Though this finding agrees with rainfall indices, the contrary result of 

PET indices, contradicts the wet condition indicated in Obubu et al., (2021), though 

this can be attributed by increase in maximum temperature as per previous study 

(Obubu et al., 2021). However, study by Onyutha et al., (2020) showed reduction in 

precipitation (1960-2000) in KWMZ, which can be linked to the positive trend in 
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extreme PET indices. CDPET5 (Figure 4.3g) generally exhibited positive trend in the 

entire study area. With further increase in the threshold from 5mm to 10mm, VWMZ 

and AWMZ showed negative trend in CDPET10 (Figure 4.3h). Almost, half of the 

country in the western direction showed negative trend in SPETD5 (Figure 4.3i) and 

positive trend in the eastern direction. The spatial extent of positive trend increased 

westward when the threshold was increased from 5mm to 10mm (Figure 4.3j) 

respectively.   

 

Figure 4.3: Trend Slope a) NDD1, b) NDD5, c) CDD1, d) CDD5, e) NDPET5, f) 

NDPET10, g) CDPET5, h) CDPET10, i) SPETD5, j) SPETD10. 
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Table 4.3: Average trend slope of climatic indices in each WMZ. 

WMZs 

NDD1 

(day/year) 

NDD5 

(day/year) 

CDD1 

(day/year) 

CDD5 

(day/year) 

NDPET5 

(day/year) 

NDPET10 

(day/year) 

CDPET5 

(day/year) 

CDPET10 

(day/year) 

SPETD5 

(mm/year) 

SPETD10 

(mm/year) 

AWMZ -3.35 -2.26 -1.15 -2.41 -0.88 -0.42 -0.22 0.01 -8.54 -4.93 

VWMZ -3.76 -2.02 -1.69 -2.85 -0.57 -0.27 -0.12 -0.01 -6.34 -2.89 

UNWMZ -2.22 -1.45 -0.96 -1.24 -0.57 -0.12 -0.57 0.03 -4.59 -1.25 

KWMZ -2.01 -1.16 -0.56 -1.33 -0.21 0.36 -0.21 0.03 0.2 4.33 

The bold values indicate that the trend was significant.
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Figure 4.4 shows statistical annual trend direction of extreme climatic indices across 

the WMZs and the Zα/2 (1.95) value for significance (𝑝 < 0.05) of the trend was 

selected at α = 0.05. Figure 4.4a – e exhibited negative trend direction for all the 

extreme rainfall indices and NDPET5. In this case, the indices explain the spatial 

variation in drought severity, which was significant(p = 0.05) in UNWMZ (Table 

4.4). This finding agrees with Kalisa et al., (2020) on decreasing drought in northern 

Uganda, which is part of UNWMZ. With increased threshold in PET indices, from 

5mm to 10mm, UNWMZ and KWMZ showed an increase in spatial extent of 

positive trend (Figure 4.4f, g, h, I, j). This increase indicates that the regions moisture 

condition increased in AWMZ and VWMZ more than other zones, though with 

insignificant magnitude (Table 4.4). The loss in moisture is associated with drought 

episode.  
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Figure 4.4: Trend directions a) NDD1, b) NDD5, c) CDD1, d) CDD5, e) NDPET5, 

f) NDPET10, g) CDPET5, h) CDPET10, i) SPETD5, j) SPETD10. 

Generally, all the climatic indices showed negative trend across the four WMZs, 

except for NDPET10 (KWMZ), CDPET10 (AWMZ, KWMZ and UNWMZ), 

SPETD5 and SPETD10 (KWMZ) (Table 4.4). With Z value standardized at 1.95, 

UNWMZ exhibited significant (p < 0.05), negative trend in all the rainfall indices 

and NDPET5 (Table 4.4). Related to this, the study exhibited significant (p < 0.05) 

negative trend in AWMZ and KWMZ (Table 4.4). 
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Table 4.4: Average trend direction of the extreme climatic indices across the WMZs. 

WMZ 

NDD1 

(Z) 

NDD5 

(Z) 

CDD1 

(Z) 

CDD5 

(Z) 

NDPET5 

(Z) 

NDPET10 

(Z) 

CDPET5 

(Z) 

CDPET10 

(Z) 

SPETD5 

(Z) 

SPETD10 

(Z) 

AWMZ -1.60 -1.83 -1.84 -2.03 -1.84 -0.72 -0.30 0.11 -1.48 -0.65 

KWMZ -1.64 -1.74 -1.50 -1.97 -1.06 0.61 -0.34 0.45 0.05 0.63 

UNWMZ -2.00 -2.10 -2.02 -2.28 -2.20 -0.08 -1.28 0.53 -1.08 -0.02 

VWMZ -1.50 -1.56 -1.77 -1.64 -1.01 -0.64 -0.32 -0.26 -0.92 -0.62 
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4.2.4 Variability 

Figure 4.5 shows annual variability of extreme climatic indices (both rainfall and 

PET) across the VWMZ. Considering the periods at the beginning and end of the 

data (Table 4.5), the entire VWMZ was characterized by mainly positive and 

negative sub-trends. In this case, H0 (natural randomness) was rejected (p < 0.05) 

for CDD1, CDD5, NDD1, NDD5 (Figure 4.5a-d) with significant oscillation low 

(OL). Both CDPET5 and CDPET10 (Figure 4.5e, f) were characterized by weak 

amplitude of the oscillation in a temporal pattern. This provides certainty in defining 

predictive measures on coping mechanism to cumulative impact of loss of moisture. 

However, this finding does not agree with previous study by Najjuma et al., (2021) 

that showed  extreme and severe drought variation from 2004 to 2008 in Mubende 

and Bukomansimbi Districts within VWMZ. This is simply because of the small area 

considered under this study with very short time window that may not infer relatively 

on VWMZ. In this case, the H0 (natural randomness) was not rejected(p < 0.05), for 

the extreme PET indices CDPET5, CDPET10, NDPET5, NDPET10, SPETD5, AND 

SPETD10 (Figure 4.5e-j). The compiled oscillation lows and highs in the extreme 

climatic indices averaged over the Victoria WMZ can be found in Table 4.5. 



69 

 

 

 

 

Figure 4.5: Variability in climatic indices in VWMZ a) CDD1, b) CDD5, c) NDD1, 

d) NDD5, e) CDPET5, f) CDPET10, g) NDPET5, h) NDPET10, i)  SPETD5, j) 

SPETD10 annual time scale.  
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Table 4.5:  Variability of climatic indices in VWMZ. 

Extreme climatic indices 

Period 

Positive sub trend  Negative sub trend 

CDD1 1979-1985 1986-2013 

CDD5 1979-1985 1986-2013 

NDD1 1979-1986 1987-2013 

NDD5 1979-1986 1987-2013 

CDPET5 1979-1991 1992-2013 

CDPET10 1979-1991 1992-2013 

NDPET5 1979-1989 1990-2013 

NDPET10 1979-1991 1992-2013 

SPETD5 1979-1989 1990-2013 

SPETD10 1979-1991 1992-2013 

Figure 4.6 shows annual variability of extreme climatic indices across the AWMZ 

(Figure 4.6). Given the selection of 𝛼 as 0.05, the Zα
2⁄
= 1.95 and the entire period 

of data was characterized by both high and low oscillations, respectively (Table 4.1). 

For instance, NDD1 showed positive and negative sub-trends from 1979 to 1985 and 

1986 to 2013, respectively (Figure 4.6c). Considering the oscillation low, H0 (natural 

randomness) was rejected (𝑝 < 0.05) for NDD1 and NDD5 (Figure 4.6c, d) with 

significant decline from 1986 to 2013 (Figure 4.6c, d). The H0 (natural randomness) 

was not rejected (𝑝 > 0.05) for the remaining extreme climatic indices including 

CDD1, CDD5, CDPET5, CDPET10, NDPET5, NDPET10, SPETD5, and SPETD10 
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(Figure 4.6a, b and e-j). This shows that the variability around the long term mean of 

these indices except for NDD1 and NDD5 is weak, as such, it is less difficult to 

manage the drought scenarios since the extreme can be easily predictable. Table 4.6 

shows the epochs of both negative and positive sub-trends of the extreme climatic 

indices averaged over the AWMZ. 
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Figure 4.6: Variability in climatic indices in AWMZ a) CDD1, b) CDD5, c) NDD1, 

d) NDD5, e) CDPET5, f) CDPET10, g) NDPET5, h) NDPET10, i)  SPETD5, j) 

SPETD10 annual time scale.  

Table 4.6:  Variability of climatic indices in AWMZ. 

Extreme climatic indices 

Period 

Positive sub trend  Negative sub trend 

CDD1 1979-1985 1986-2013 

CDD5 1979-1984 1985-2013 

NDD1 1979-1985 1986-2013 

NDD5 1979-1986 1987-2013 

CDPET5  1979-2013 

CDPET10 1981-2006 1979-1980, 2007-2013 

NDPET5 1979-1980 1981-2013,  

NDPET10 1979-1991 1992-2013 

SPETD5 1979-1987 1988-2013 

SPETD10 1979-1992 1993-2013 

Figure 4.7 shows annual variability of extreme climatic indices across the KWMZ. 

The variation in the amplitude of extreme PET indices was mainly positive for 

CDPET10, NDPET10 and SPETD10 (Figure 4.7f, h, j). The increased loss of 

moisture evident during this period, contribute to climatic dry condition. Onyutha et 

al., (2020) study, draws similarity with this result, where there was observed 

decrease in annual precipitation from 1961 to 2000. The temporal variation for the 
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period after 2000, Table 4.7 further indicate positive sub-trend in these indices up to 

2013. Generally, the periods from the beginning and end of the showed both positive 

and negative sub-trends. For instance, NDD1 exhibited positive and negative sub-

trends from 1979 to 1986 and 1987 to 2013, respectively (Figure 4.7c). Following 

this oscillation, H0 (natural randomness) was rejected (𝑝 < 0.05) for NDD1 and 

NDD5 (Figure 4.7c, d). Relatedly, H0 (natural randomness) was not rejected (𝑝 >

0.05) for the remaining extreme climatic indices including CDD1, CDD5, CDPET5, 

CDPET10, NDPET5, NDPET10, SPETD5 and SPETD10 (Figure 4.7a, b and e-j). 

Table 4.7 shows epochs over the study period where positive and negative sub-trends 

occurred in the extreme climatic indices averaged over the KWMZ. 
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Figure 4.7: Variability in climatic indices in KWMZ a) CDD1, b) CDD5, c) NDD1, 

d) NDD5, e) CDPET5, f) CDPET10, g) NDPET5, h) NDPET10, i)  SPETD5, j) 

SPETD10 annual time scale.  

 

 

 

 

SPETD10 
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Table 4.7:  Variability of climatic indices in KWMZ. 

Extreme climatic indices 

Period 

Positive sub trend  Negative sub trend 

CDD1 1979-1987 1988-2013 

CDD5 1979-1984 1985-2013 

NDD1 1979-1986 1987-2013 

NDD5 1979-1986 1987-2013 

CDPET5 2000-2013 1979-1999 

CDPET10 1985-2013 1979-1984 

NDPET5  1979-2013 

NDPET10 1985-2013 1979-1984 

SPETD5 1986-2010 1979-1985, 2011-2013 

SPETD10 1985-2013 1979-1984 

Figure 4.8 shows annual variability of extreme climatic indices across Upper Nile 

WMZ. The periods at the beginning and end of the data for both rainfall and PET 

indices were characterized by negative sub-trend in almost the entire zone, except for 

CDPET10 (1984-2010), NDPET10 (1986-1993, 1996-2000) and SPETD10 (1985-

1994, 1997-2006) were positive sub-trend was observed (Table 4.8). For instance, 

NDPET5 exhibited negative sub-trends over the entire period 1979-2013 (Figure 

4.8g). Considering this variability, H0 (natural randomness) was rejected (𝑝 < 0.05) 

for NDD1 and NDD5 (Figure 4.8c, d). Similarly, H0 was not rejected (𝑝 > 0.05) for 

the remaining extreme climatic indices including CDD1, CDD5, CDPET5, 



76 

 

 

 

CDPET10, NDPET5, NDPET10, SPETD5, and SPETD10 (Figure 4.8a, b and e-j). 

This result shows that the region have been wetter in recent years than before. Table 

4.8 shows epochs of oscillation lows and highs of the extreme climatic indices 

averaged over the UNWMZ. 

Table 4.8:  Variability of climatic indices in UNWMZ. 

Extreme climatic indices 

Period 

Positive sub trend  Negative sub trend 

CDD1 Nil 1979-2013 

CDD5 Nil 1979-2013 

NDD1 Nil 1979-2013 

NDD5 Nil 1979-2013 

CDPET5 Nil 1979-2013 

CDPET10 1984-2010 1979-1983, 2011-2013 

NDPET5 Nil 1979-2013 

NDPET10 1986-1993, 1996-2005 

1979-1985, 1994-1995, 

2006-2013 

SPETD5 Nil 1979-2013 

SPETD10 1985-1994, 1997-2006 

1979-1984,1995-1996, 

2007-2013 
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Figure 4.8: Variability in climatic indices in UNWMZ a) CDD1, b) CDD5, c) 

NDD1, d) NDD5, e) CDPET5, f) CDPET10, g) NDPET5, h) NDPET10, i)  SPETD5, 

j) SPETD10 annual time scale. 
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4.3 Correlation analysis 

Figure 4.9 shows linkages of rainfall climatic indices (NDD1 and NDD5) with large-

scale ocean-atmosphere conditions. The legend in Figure 4.9 was standardized to 

indicate significance to different levels, with critical correlation value at 𝛼 = 0.05, as 

0.27. AMO negatively correlated with both NDD1 (Figure 4.9a) and NDD5 (Figure 

4.9e), almost across entire country, except in the northeastern. However, the 

correlation was significant over VWMZ (for NDD1) and southernmost part of the 

Albert WMZ (Table 4.9). Noticeably, the area with correlation ranging from -0.27 to 

zero is larger for NDD1 than that of NDD5 (Figure 4.9a, e). This is because of the 

increase in the threshold from 1mm to 5mm. In other words, increasing precipitation 

threshold from 1mm to 5mm led to a decrease in the area with dry conditions. Thus, 

AMO is more correlated with wet than dry condition. Generally, IOD showed 

significant (p < 0.05) negative correlation with both NDD1 and NDD5 in all the 

WMZs (Table 4.9). Similarly, QBO showed significant (p < 0.05) positive 

correlation with NDD1 and NDD5 across the four WMZs (Table 4.9). However, the 

variation in NDD1 and NDD5 across the country positively correlated with both 

Niño3 and QBO (Figure 4.9c-d, g-h).  
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Figure 4.9: Correlation between a) AMO and NDD1, b) IOD and NDD1, c) Niño3 

and NDD1, d) QBO and NDD1, e) AMO and NDD5, f) IOD and NDD5, g) Niño3 

and NDD5, h) QBO and NDD5. 
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Table 4.9: Average correlation of NDD1, NDD5 and large-scale ocean-atmosphere 

conditions across the WMZs. 

WMZs 
Extreme 

rainfall indices 
AMO IOD QBO Niño3 

AWMZ 
NDD1 -0.26 -0.52 0.56 0.17 

NDD5 -0.24 -0.53 0.56 0.17 

VWMZ 
NDD1 -0.33 -0.49 0.55 0.19 

NDD5 -0.27 -0.51 0.55 0.20 

KWMZ 
NDD1 0.01 -0.46 0.48 0.25 

NDD5 -0.01 -0.46 0.49 0.26 

UNWMZ 
NDD1 0.03 -0.55 0.56 0.23 

NDD5 0.01 -0.53 0.56 0.25 

Figure 4.10 shows how the climatic indices (CDD1 and CDD5) are correlated with 

large-scale ocean-atmosphere conditions with critical correlation value computed as 

0.27, at α = 0.05. Both AMO and IOD negatively correlated with CDD1 and CDD5 

in almost all the four WMZs across the entire country (Figure 4.10a, b, e, f), except 

in the northeastern (Figure 4.10a, b, e, f) part of the country. However, there was 

significant (p < 0.05) negative correlation over VWMZ, for both CDD1 and CDD5 

(AMO and IOD); AWMZ for CDD1 and CDD5 (AMO) and CDD5 (IOD); similarly, 

KWMZ and UWMZ for CDD5 (Table 4.10). Unlike AMO and IOD, Niño3 and 

QBO positively correlated with CDD1 and CDD5 in the almost all parts of the 

country (Figure 4.10c, d, g, h). The correlation was significant (p < 0.05) between 

QBO and both CDD1 and CDD5 in AWMZ, CDD1 (VWMZ), CDD5 (KWMZ) and 

CDD1 (UNWMZ) western part of UNMWZ and KWMZ. It is evident that variations 

in large scale ocean atmosphere state influenced by QBO, significantly increased 
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CDD1 and CDD5 in all the zones. This is similar with NDD1 and NDD5 in Table 

4.9 above. Therefore, the zones dryness is partly attributed by changes in QBO in all 

the WMZs. Also observed was that, the area with correlation ranging from 0 to 0.27 

was larger between Nino3, CDD1 and CDD5 (Figure 4.10c, g) in AWMZ and 

VWMZ respectively. QBO also correlated strongly with CDD1 and CDD5 in 

AWMZ, VWMZ and west Nile with values ranging from 0.27 to 0.4 (Figure 4.10d, 

h). However, Karamoja and Mount Elgon areas showed negative correlation of 

CDD1 with QBO (Figure 4.10d). When the threshold was increased from 1mm to 

5mm, a change was observed in the same areas to positive (Figure 4.10h). In other 

words, increasing precipitation threshold from 1mm to 5mm leads to increase in the 

area with dry conditions. Thus, QBO is more correlated with dry than wet condition 

(Figure 4.10d, h), while Nino3 with wet than dry condition (Figure 4.10c, g).  
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Figure 4.10: Correlation between a) AMO and CDD1, b) IOD and CDD1, c) Niño3 

and CDD1 d) QBO and CDD1, e) AMO and CDD5, f) IOD and CDD5, g) Niño3 and 

CDD5, h) QBO and CDD5. 

QBO positively correlated with CDD1 and CDD5 across all the WMZs and more 

significantly in AWMZ, VWMZ (CDD1), KWMZ (CDD5) and UNWMZ (CDD1) 

(Table 4.10). 
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Table 4.10: Average correlation of CDD1, CDD5 and large-scale ocean-atmosphere 

condition across the WMZs 

WMZs 
Extreme 

rainfall indices 
AMO IOD QBO Niño3 

AWMZ 
CDD1 -0.34 -0.24 0.38 0.19 

CDD5 -0.33 -0.34 0.45 0.12 

VWMZ 
CDD1 -0.44 -0.29 0.42 0.12 

CDD5 -0.39 -0.40 0.25 0.14 

KWMZ 
CDD1 -0.13 -0.19 0.23 0.10 

CDD5 -0.30 -0.28 0.29 0.01 

UNWMZ 
CDD1 -0.19 -0.35 0.33 -0.07 

CDD5 -0.37 -0.30 0.25 -0.20 

Figure 4.11 shows linkages of climatic indices (NDPET5 and NDPET10) with large-

scale ocean-atmosphere conditions, with critical correlation value computed as 0.27, 

at α = 0.05. IOD exhibited significant (𝑝 < 0.05) negative correlation with both 

NDPET5 and NDPET10 across almost the entire WMZs, except in KWMZ 

(NDPET10) (Table 4.11). Similarly, like for IOD, AMO was negatively correlated 

with NDPET5 in AWMZ (Figure 4.11a). However, with the increase in threshold 

from 5mm to 10mm, the area under UNWMZ and KWMZ showed a change in 

correlation range from 0 to 0.27 and above (Figure 4.11a, e). Consequently, the result 

exhibited significant (p < 0.05) positive relationship between AMO and NDPET10 

(Figure 4.11a, e). In other words, increasing PET threshold from 5mm to 10mm led 

to an increase in the area with dry conditions. This showed that, AMO was more 

correlated with dry than wet condition. Variation in number of days with PET greater 

than 5mm and 10mm across the country was positive with QBO, except for areas 
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around Mount Elgon and further north (Figure 4.11d, h). Correlation was significant 

(P < 0.05) between both NDPET5 and NDPET10 with QBO in AWMZ and VWMZ 

(Table 4.11). Niño3 exhibited insignificant correlation with range from -0.27 to 0.27 

(Figure 4.11c, g).  

 

Figure 4.11: Correlation between a) AMO and NDPET5, b) IOD and NDPET5, c) 

Niño3 and NDPET5, d) QBO and NDPET5, e) AMO and NDPET10, f) IOD and 

NDPET10, g) Niño3 and NDPET10, h) QBO and NDPET10. 
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Table 4.11: Average correlation of NDPET5, NDPET10 and large-scale ocean-

atmosphere condition across the WMZs. 

WMZs 
Extreme PET 

indices 
AMO IOD QBO Niño3 

AWMZ 
NDPET5 -0.43 -0.42 0.46 -0.06 

NDPET10 -0.04 -0.46 0.44 0.07 

VWMZ 
NDPET5 -0.18 -0.42 0.44 0.06 

NDPET10 -0.06 -0.32 0.32 0.07 

KWMZ 
NDPET5 0.16 -0.36 0.26 -0.04 

NDPET10 0.47 -0.25 0.09 -0.03 

UNWMZ 

NDPET5 0.07 -0.30 0.22 -0.06 

NDPET10 0.43 -0.32 0.19 -0.01 

Figure 4.12 shows linkages of climatic indices (CDPET5 and CDPET10) with large-

scale ocean-atmosphere conditions, with critical correlation value computed as 0.27 

at α = 0.05 (Figure 4.12). Correlation between both AMO and IOD was negatively 

significant (p < 0.05) with CDPET5 in all the WMZs, and CDPET10 in KWMZ 

and UNWMZ (Table 4.12). IOD was negatively correlated with CDPET5 almost 

across entire country (Figure 4.12b). An increase in threshold from 5mm to 10mm in 

in Figure 4.12a, e, the area with critical values from 0 to 0.27 and above increased 

significantly (Table 4.12). This shows that AMO is more correlated with dry than 

wet condition. Niño3 insignificantly correlated with CDPET5 and CDPET10 in all 

the WMZs (Table 4.12). However, the correlation was positive over AWMZ, 

VWMZ and southwest KWMZ (Figure 4.12 c). QBO showed significant (p < 0.05) 

positive correlation with CDPET5 in AWMZ, VWMZ and KWMZ, and insignificant 

for UNWMZ (Table 4.12).  
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Figure 4.12: Correlation between a) AMO and CDPET5, b) IOD and CDPET5, c) 

Niño3 and CDPET5, d) QBO and CDPET5, e) AMO and CDPET10, f) IOD and 

CDPET10, g) Niño3 and CDPET10, h) QBO and CDPET10. 
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Table 4.12: Average correlation of CDPET5, CDPET10 and large-scale ocean-

atmosphere condition across the WMZs. 

WMZs 
Extreme PET 

indices 
AMO IOD QBO Niño3 

AWMZ 
CDPET5 -0.37 -0.32 0.42 0.09 

CDPET10 0.16 -0.14 0.13 0.08 

VWMZ 
CDPET5 -0.33 -0.39 0.48 0.14 

CDPET10 0.05 -0.14 0.14 0.04 

KWMZ 
CDPET5 -0.30 -0.28 0.29 0.01 

CDPET10 0.29 0.10 -0.12 0.02 

UNWMZ 
CDPET5 -0.37 -0.30 0.25 -0.20 

CDPET10 0.39 -0.19 0.10 -0.03 

Figure 4.13 shows linkages of climatic indices (SPETD5 and SPETD10) with large-

scale ocean-atmosphere conditions with critical correlation value selected as 0.27 at 

α = 0.05. The tropical climate are influenced by thermodynamic variables such as 

Sea Surface Temperature (SST) and moisture fluxes (Lau and Nath, 1994). The 

atmosphere and ocean condition to a large extent changes due to these variables, with 

a positive or negative feedback (Xue et al., 2020). The feedback covers wide region 

and basin scale level impacting on the ocean atmosphere condition in terms of IOD, 

AMO variables (Hrudya, Varikoden and Vishnu, 2021). In this case both AMO 

(KWMZ and UNWMZ) and QBO (AWMZ and VWMZ) showed significant (𝐩 <

𝟎. 𝟎𝟓) positive correlation with SPETD5 and SPETD10 respectively Table 4.13). 

IOD correlated negatively with both SPETD5 and SPETD10 in all the WMZs 

(Figure 4.13). It was significant (𝐩 < 𝟎. 𝟎𝟓) in AWMZ, VWMZ, UNWMZ and 

KWMZ (SPETD5) (Table 4.13).  Noticeably, the area with correlation ranging from 
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-0.4 to zero was larger for SPETD5 than that of SPETD10 (Figure 4.13a, e). This is 

because of the increase in the threshold from 5 mm to 10 mm. This means, increasing 

PET threshold from 5mm to 10mm led to an increase in the area with positive 

correlation (Figure 4.13a, e). Thus, AMO is more correlated with dry than wet 

condition.  Niño3 exhibited both negative and positive correlation in the range of -

0.27 to 0.27 across the four WMZs in the country (Figure 4.13c, g).  

 

Figure 4.13: Correlation between a) AMO and SPETD5, b) IOD and SPETD5, c) 

Niño3 and SPETD5, d) QBO and SPETD5, e) AMO and SPETD10, f) IOD and 

SPETD10, g) Niño3 and SPETD5, h) QBO and SPETD10. 
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Table 4.13: Average correlation of SPETD5, SPETD10 and large-scale ocean-

atmosphere condition across the WMZs. 

WMZ 
Extreme PET 

indices 
AMO IOD QBO Niño3 

AWMZ 
SPETD5 -0.25 -0.43 0.44 -0.02 

SPETD10 -0.01 -0.46 0.44 0.08 

VWMZ 
SPETD5 -0.12 -0.45 0.47 0.08 

SPETD10 -0.05 -0.32 0.32 0.07 

KWMZ 
SPETD5 0.42 -0.31 0.16 -0.03 

SPETD10 0.47 -0.27 0.11 -0.02 

UNWMZ 
SPETD5 0.34 -0.31 0.17 -0.04 

SPETD10 0.43 -0.36 0.22 -0.01 

 

4.4 Validation of dataset 

This result demonstrated that CFSR can reliably reproduce precipitation indices 

extracted from the rainfall climatology over the WMZs. This was noted for Kasanda, 

Masaka Forest and Nkozi stations, and Gulu station for NDD1, where there was 

strong agreement. However, despite the reliability of CSFR in reproducing the 

extreme rainfall indices in some stations, there was contrary performance in Wadelai 

(low correlation), Gulu (for NDD5, CDD1 and CDD5), Masindi, Soroti and Serere 

stations. There is need for further investigations in these stations. Generally, the 

CFSR can be used as an alternative to observed, especially, in areas known for 

ground-based data scarcity for timely investigation of dry climatic conditions.    



90 

 

 

 

Table 4.15 presents a summary of statistical metrics of results obtained from the 

validation analysis of gridded CFSR and observed station datasets based on daily 

distribution covering a period from 1979 to 2009. 
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Table 4.14: Correlation coefficient values between observed rainfall indices at selected stations and gridded CFSR. 

S/No. Station name  

Location Correlation for various rainfall Indices 

From To Long. Lat. NDD1 NDD5 CDD1 CDD5 

1 Wadelai WDD - Gulu 1979 2009 31.40 2.73 0.38 0.38 0.28 0.24 

2 Gulu Met. Station - Gulu 1979 2009 32.28 2.78 0.53 -0.01 0.41 0.22 

3 Masindi Met. Station 1979 2009 31.72 1.68 -0.01 -0.07 -0.02 0.14 

4 Kassanda - Mubende 1979 2009 31.68 0.45 0.96 0.96 0.96 0.96 

5 Serere Agric. Station  - Soroti 1979 2009 33.45 1.52 0.30 0.27 0.24 0.05 

6 Soroti Met. Station - Soroti 1979 2009 33.62 1.72 0.31 -0.01 0.14 -0.23 

7 Masaka Forest - Masaka 1979 2009 31.73 -0.33 0.91 0.98 0.95 0.87 

8 Nkozi  Experimental Farm - Mpigi 1979 2009 32.02 0.02 0.99 0.79 0.94 0.92 

Note: values in bold shows 𝐻0 (no correlation) was rejected(𝑝 < 0.05). 

 

 



92 

 

 

 

Table 4.15: RMSE values between observed and gridded CFSR Climate indices. 

S/No. Station name  

Location RMSE for various rainfall Indices 

From To Long. Lat. NDD1 NDD5 CDD1 CDD5 

1 Wadelai WDD - Gulu 1979 2009 31.40 2.73 107.01 75.03 72.91 83.46 

2 Gulu Met. Station - Gulu 1979 2009 32.28 2.78 144.68 109.26 22.07 48.38 

3 Masindi Met. Station 1979 2009 31.72 1.68 126.74 80.04 29.28 47.98 

4 Kassanda - Mubende 1979 2009 31.68 0.45 0.00 0.00 0.00 0.00 

5 Serere Agric. Station  - Soroti 1979 2009 33.45 1.52 82.13 66.15 47.37 99.54 

6 Soroti Met. Station - Soroti 1979 2009 33.62 1.72 79.36 83.70 71.09 141.92 

7 Masaka Forest - Masaka 1979 2009 31.73 -0.33 0.63 1.26 0.00 0.00 

8 Nkozi  Experimental Farm - Mpigi 1979 2009 32.02 0.02 9.02 18.45 21.19 35.99 
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4.5 Chapter summary 

This results of the research objectives where presented under this chapter. The 

findings were categorized based on the set out objectives. This was done using maps, 

tables and graphs. Further discussion was conducted to logically interpret results that 

informed conclusions and appropriate recommendations for future actions. 
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In conducting this research, changes in climatic dry condition in the four WMZs in 

Uganda was investigated. Gridded daily CFSR dataset was used to conduct analysis 

of extreme rainfall and PET indices, with conclusion from finding drawn as below.   

i) What are the characteristics of dry climatic conditions across the WMZs 

In characterizing the climatic dry conditions across the WMZs, data obtained on 

rainfall indices (1979 – 2013) indicated that KWMZ had the highest annual average 

NDD1, NDD5, CDD5, NDPET10, CDPET5, CDPET10, SPETD5 and SPETD10. 

This means KWMZ was climatically drier than all the other three WMZs, followed 

by UNWMZ. Similarly, VWMZ showed the lowest average number of NDD1, 

CDD1, NDPET5, NDPET10, CDPET5, CDPET10, SPETD5 and SPWTD10, 

implying that VWMZ was climatically wetter than all the WMZs followed by 

AWMZ, during the study period (1979 - 2013). Hence, KWMZ was the most 

affected zone with meteorological drought and VWMZ being the least affected. 

Generally, the long term average annual trend magnitude of rainfall and PET extreme 

climatic indices in all the four WMZs exhibited a decline an indication that the 

WMZs were influenced by rainfall of higher magnitude than 1mm over the study 

period. However, in specific regions within the WMZs, there was variability in the 

trends observed. For example, the Karamoja, Albertine rift and north east of 
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UNWMZ areas exhibited increased trend in the number of dry days that signified 

positive change in severity of the dry condition.  

ii) What is the significance of changes in the extreme climatic indices 

There was a significant (p<0.05) decline in sum of PET indices, except in KWMZ 

where a positive trend was significantly observed in sum of PET >10mm/day. 

Similarly, SPETD10 exhibited significant change, except in UNWMZ. Generally, the 

rest of the climatic indices of both rainfall and PET exhibited insignificant changes 

across the four WMZs over the period from 1979 to 2013 with a wetter condition. 

iii) What is the relationship between multi-decadal co-variability in extreme 

climatic indices with changes in large- scale ocean-atmosphere conditions 

QBO (IOD) exhibited significant (p < 0.05) positive (negative) correlation in all the 

four WMZs, between NDD1 and NDD5, while AMO (negative) with NDD1 in 

VWMZ. Niño3 (AMO) showed insignificant positive (negative) correlation across 

the entire WMZs. The finding showed that as QBO increased, it influenced positive 

change on the meteorological drought indicators in all the WMZs in Uganda and 

therefore contributed to drought episodes during the study period. 

There was significant (p < 0.05) negative correlation in AWMZ and VWMZ 

between AMO and (CDD1 and CDD5). In KWMZ and UNWMZ, the significance 

was with CDD5 only. Similarly, IOD exhibited significant (p < 0.05) negative 

correlation in VWMZ and UNWMZ, and only with CDD5 in AWMZ and KWMZ. 

QBO had significant (P < 0.05) positive correlation in AWMZ and VWMZ with 
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CDD1, UNWMZ (CDD1) and KWMZ (CDD5) respectively. There was no 

significant linear correlation between Niño3 and extreme rainfall index in all the 

WMZs. 

NDPET5 and NDPET10 showed significant (p < 0.05) positive correlation with 

QBO in AWMZ and VWMZ. Similarly, AMO and NDPET10 in KWMZ and 

UNWMZ, respectively. IOD showed significant (p < 0.05) negative correlation in 

all the WMZs, except for NDPET10 in KWMZ. Niño3 exhibited insignificant 

correlation across the entire four WMZs.  

AMO and IOD exhibited significant (p < 0.05) negative correlation with CDPET5 

in all the WMZ. Similarly a significant (p < 0.05) positive correlation between 

AMO and CDPET10 was exhibited in KWMZ and UNWMZ. QBO showed 

significant (𝑝 < 005) positive correlation with CDPET5 in AWMZ, VWMZ and 

UNWMZ respectively. There was no significant correlation with Niño3 in all the 

WMZs. 

SPETD5 and SPETD10 showed significant (𝑝 < 0.05) positive correlation with both 

AMO (KWMZ and UNWMZ) and QBO (AWMZ and VWMZ). This means AMO 

influences KWMZ and UNWMZ, while QBO influences AWMZ and VWMZ. IOD 

had significant (p < 0.05) negative correlation in all the WMZs, except for 

SPETD10 in KWMZ which was not significant. There was no correlation with Niño3 

in the entire WMZs. With all these information providing knowledge of the drivers 

of variability in rainfall and PET indices, dry climatic condition can be easily 

predicted. 
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5.2 Relevance of the findings 

 Analysis of variability in rainfall and evapotranspiration indices provides an 

opportunity to characterize changes in climatic dry conditions across the 

WMZs. 

 Based on the linkages between the variation in dry climatic conditions and 

climatic indices (AMO, Nino3, IOD, QBO), it is possible to predict future 

scenario of drought, for reliable adaptation to the impact of changes of climate 

on hydro-climate. 

5.3 Recommendations 

This research recommends that, further studies in the future across the WMZs should 

focus on the following; 

a) The predictive potential of changes in drought indices on a seasonal river 

system. 

b) Analysis of the impact of variability in PET0 to catchment water losses across 

the WMZs. 

c) Correlation in seasonal variation in temperature on extreme rainfall episodes. 
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