
KYAMBOGO    UNIVERSITY 

DIRECTORATE OF RESEARCH AND GRADUATE TRAINING 

 COMPARISON OF PHYSICAL AND STATISTICAL MODELS IN 

PREDICTING SPACE-TIME DECAY OF RESIDUAL CHLORINE 

IN WATER DISTRIBUTION SYSTEM   

BY 

    JULIUS CAESAR KWIO-TAMALE 

B.Eng. CBE (KyU) 

18/U/GMEW/22153/PD 

A DISSERTATION SUBMITTED TO KYAMBOGO UNIVERSITY 

DIRECTORATE OF RESEARCH AND GRADUATE TRAINING IN 

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE  

AWARD OF MASTER OF SCIENCE IN WATER AND SANITATION 

ENGINEERING DEGREE OF KYAMBOGO UNIVERSITY 

October 2022



DECLARATION 

I, Julius Caesar Kwio-Tamale, hereby declare that this submission is my own work 

and that to the best of my knowledge and belief, it contains no material previous ly 

published or written by another person nor material which has been accepted for the 

award of any other degree of the university or other institute of higher learning except 

where due acknowledgement has been made in the text and reference list. 



APPROVAL 

The undersigned approve that they have read and hereby recommend for submission 

to Directorate of Research and Graduate Training of Kyambogo University a 

dissertation entitled "Comparison of Physical and Statistical Models in Predicting 

Space-Time Decay of Residual Chlorine in Gravity Water Distribution Systems:" in 

partial fulfillment of the requirements for the award of Master of Science in Water and 

Sanitation Engineering Degree of Kyambogo Univers ity. 

~h.~ ~ 
Dr. Charles Onyutha ... . . . ...... .. . .............. . ................. Supervisor 

CSK · l \ · ~o:;:t;L 
Date: ... ... .. .... ... .. ....... ... . .. . . ............ . ... .... -. 

Dr. Anne Nakagiri ... .. . ...... ... ... ............. .. .. ..... .... ... Supervisor 

Date: ...... . . ....... . ................... . .......... . . .. .. -. 

11 



iii 

ABSTRACT 

Chlorine is the most widely used disinfectant in water distribution due to its efficacy, 

ease of application, low cost and extended disinfection durability. The World Health 

Organization recommends concentrations of residual chlorine in drinking water to be 

within 0.2 – 5 mg/l. Concentrations lower than 0.2 mg/l expose water consumers to 

secondary water-borne diseases. Chlorine concentrations more than 5 mg/l expose 

consumers to carcinogenic disinfection by-products.  Studies on comparative analysis 

of performance of physical and statistical models in predicting chlorine decay in 

drinking water distribution system are lacking. The specific objectives of this study 

were: (1) characterization of residual chlorine decay parameters in water distribution, 

(2) assessment of space-time decay of chlorine in water distribution, (3) comparison 

of performance of models in predicting chlorine decay in water distribution and (4) 

identification of appropriate model(s) for predicting chlorine decay in water 

distribution system. Performance of EPANET physical model was compared with 

statistical models of multiple linear regression (MLR), principal component regression 

(PCR), lasso regression (LR), ridge regression (RR), decision tree (DT), random forest 

(RF) and artificial neural network (ANN). ANN performed best with R2 of 94% 

followed by MLR (63%), PCR (61%), RF (55%) and DT (41%). Initial chlorine and 

electrical conductivity were the two most significant parameters in water distribution 

that together contributed to about 90% of chlorine decay. Based on generalizability, 

dimensionality control and interpretability as desired factors for a good model, linear 

regression with R-squared of 63% and 0.045 mg/l error estimate performed best in 

predicting residual chlorine. Water zoning is recommended with existing water 

reservoirs as secondary chlorination points to maintain residual chlorine 

concentrations within 0.2 – 5 mg/l. In return, high and low dosages that cause 

carcinogenic disinfection by-products and predispose public health to secondary 

pathogenic infectious water-borne diseases respectively will both be avoided 

throughout water distribution network. 
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CHAPTER ONE 

INTRODUCTION 

1.1   Background 

Chlorine is the most widely used disinfectant in drinking water because of its low 

cost, extended disinfectant durability up to point of consumption, ease of use and 

efficacy in killing infectious pathogens (Hyunjun and Sanghyun, 2017; 

Mahendrarajah, 2014). Under-dosage of chlorine exposes consumers to microbial 

regrowth and consumer infection (Mahendrarajah (2014). Over-dosage corrodes 

pipeline infrastructure and also discourages consumption because of taste and pungent 

odour (Tiruneh et al., 2019a). Over-dosage produces carcinogenic Disinfection By-

Products (DBPs) that potentially cause cancer, reproductive disorders, liver and 

kidney damage, birth defects, miscarriage and other human health complications 

(Vuta and Dumitran, 2019). This, therefore means that control of chlorine dosage 

within safe regulatory limits is very important for public health. 

The World Health Organization (WHO) periodically revises and recommends 

drinking water standards. The WHO (2014) recommended residual chlorine in 

drinking water as 0.2 – 5 mg/l. Consequently, there is need to balance these two 

diametrically opposing but important requirements in drinking water distribution 

practice. Water utilities use various models to balance these requirements. In 

Australia, performance of general regression neural networks was compared with 

multi-linear regression models only without consideration of other chlorine decay 

models (Bowden et al., 2019). However, there has not been any detailed comparison 

of chlorine decay models to guide water utilities on which one(s) to use (Gibbs et al., 
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2019). This study was undertaken to fill in this knowledge and research gap. The idea 

is to identify model(s) that perform appropriately in predicting amounts of initial 

chlorine to achieve the recommended range 0.2 – 5 mg/l of free chlorine in drinking 

water. 

1.2   Structure of research dissertation report 

This research report contains five chapters chapters including chapter one 

(introduction), chapter two (literature review), chapter three (research methodology), 

chapter four (results and discussion) and chapter five (summary, conclusion and 

recommendations). 

Chapter one Section 1.1 introduces the background for the research problem that is 

defined in Section 1.3.  Section 1.4 and Section 1.5 contain the main objective and 

specific objectives of the research respectively. Chapter one ends with Section 1.8 on 

conceptual framework of the study.  

Chapter Two reviews literature on process modelling and statistical modeling about 

residual chlorine decay in water distribution systems. Chapter Three explains the 

methodology in terms of research strategy, sampling design, data collection, research 

instruments, data analysis and ethical considerations undertaken in conducting the 

research. Chapter Four presents results specific to each research objective in chapter 

one’s Section 1.5. These results are also discussed accordingly. Chapter five 

summarizes research methodology, findings before concluding with recommendations 

and necessary future actions. 
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1.3   Problem statement 

Water managers tend to be confronted with two opposing but equally important 

requirements regarding the need to attain the residual chlorine concentration range of 

0.2 - 5 mg/l in drinking water as recommended by the WHO (2014). The first 

requirement is avoidance of low chlorine concentrations that exposes water consumers 

to pathogenic infections (Mahendrarajah, 2014). The second requirement is avoidance 

of high chlorine concentrations that forms carcinogenic disinfection by-products (Vuta 

and Dumitran, 2019). High chlorine concentrations also corrode water supply 

infrastructure (Tiruneh et al., 2019a). 

Physical (or process-based) and statistical models exist for predicting residual chlorine 

decay in water distribution. However, there seems to be an insufficient understanding 

on the underlying knowledge that governs process-based models (Vuta and Dumitran, 

2019). Equally, some statistical models are too simple to capture variation in 

observations. On the other hand, some statistical models are too complex and overfit 

observations in modelling realities. Besides, existing literature shows that 

performance of process models and statistical models in predicting final residual 

chlorine in water distribution have not been compared systematically (Gibbs et al., 

2019). Therefore, there is need to evaluate several models and determine which 

achieves the most acceptable results. Manual adjusting of residual chlorine levels 

causes upstream over-dosage and downstream under-dosage. Upstream over-dosage 

increases water treatment costs, consumer water bills, infrastructure corrosion, 

unpleasant taste and odour that discourages water acceptance. Downstream under-

dosage exposes public health to multiple infections and water-borne diseases.  
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Therefore, it is important to identify an appropriate chlorine decay model that 

achieves acceptable range of chlorine concentrations. Appropriate chlorine decay 

model can promote safe drinking water in line with the United Nations Sustainable 

Development Target 6 (SDG6) on the need for universal access to safe drinking water 

to enhance human health and productivity. 

1.4   Main objective of research 

The main aim of the research was to compare space-time performance of chlorine 

decay models in water distribution system.  

1.5   Specific objectives of research 

The specific objectives of the research were: 

(i) to characterize residual chlorine decay parameters in water distribution, 

(ii) to assess space-time decay of chlorine in water distribution systems, 

(iii) to compare performance of various models in water distribution systems, and 

(iv) to identify the appropriate model(s) for predicting residual chlorine decay in 

water distribution systems. 

1.6   Research questions 

The research questions were: 

(i) Which water quality and water system parameters influence space-time decay 

of chlorine? 

(ii) How does chlorine decay in space and time? 

(iii) How does the various models that predict residual chlorine concentration in 

distribution systems compare in performance? 

(iv) Which model(s) is/are appropriate for managing residual chlorine decay? 
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1.7   Scope of research  

The time, geographical and content scopes of the study were as follows: 

1.7.1   Time frame 

The study was done during the dry spell of the year which was February to early 

March 2021. This was deliberately intended to avoid disruptions like landslides that 

are endemic in this area during rain seasons. Therefore, data from rain season was out 

of scope.   

1.7.2   Geographical coverage 

The study was done on the 90 Km length of Lirima Gravity Flow Scheme in Mount 

Elgon region in eastern Uganda as shown in Figure 1.1. The Geographical Position 

System (GPS) coordinates of the water treatment plant of Lirima gravity flow scheme 

was 36N 0657122 Northing, 0098196 Easting, 1,812 meters above mean sea level. 

This gravity scheme is owned and operated by National Water and Sewerage 

Corporation. Data was collected from three out of the four water zones representing 

75%.  The three zones were Musiye zone, Manyeke zone and Vermiculite zone. Data 

was not collected from Butiru zone. This coverage was considered good enough for 

generalization to the scheme itself and other gravity water schemes. 

 

1.7.3   Content 

The study was done mainly on plastic materials in gravity water distribution system. 

For simplicity, single-reactant one-phase constant-rate-coefficient first-order model 

was assumed in process modelling of chlorine decay in water distribution systems. 

This assumption was motivated by the common use of single-reactant one-phase 

constant decay-rate modelling in water quality studies because of (1) lower order of 
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reaction of less than one (i.e. n < 1) predict better than higher order models (Hyunjun 

and Sanghyun, 2017), (2) marginal performance benefit of higher orders over simple 

first-order models  (Goyal and Patel, 2014), (3) low 0%-15% with average 12% error 

in reaction rates between first-order and second-order models (Hyunjun and 

Sanghyun, 2017; Tiruneh et al., 2019b) and (4) first order reactions performed well 

with regression R-squared of 0.89 – 0.95 (Tiruneh et al., 2019b). The fifth justification 

for this assumption was that previous studies showed that the very low ratio of fast to 

slow reactants in the order (10:10,000) (1%) in two-phase or multi-phase reactant 

models was insignificant (Jamwal and Kumar, 2016; Tiruneh et al., 2019b). The 

advantage of parallel model was also insignificant for first-order decay model. 

1.8   Study area 

The study was carried out on Lirima gravity water scheme located on the slopes of 

Mount Elgon in eastern Uganda. Lirima gravity water scheme is owned and operated 

by National Water and Sewerage Corporation.  The GPS of Lirima’s water treatment 

plant is 36 N, 0657123 Northing, 0098196 Easting and 1,812 meters above mean sea 

level. Detail maps on transmission and distribution networks of Lirima gravity flow 

scheme are in Figure 3.1 and Figure 3.2 respectively in the methodology chapter. 
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Figure 1. 1 : Research project area location map 
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1.9   Conceptual framework  

The physical and statistical models as described in Section 1.1 were used to model 

residual chlorine at any point in the water distribution system. The independent 

variables comprise water quality parameters and pipe system network parameters. The 

dependent variable is residual chlorine downstream from upstream chlorination point. 

The conceptual model for the study is as shown in Figure 1.2. 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

Figure 1. 2: Conceptual framework 

Dependent variable  
Residual Chlorine  

 

Independent variables  

Water quality 

parameters   

Water system 

parameters 

1. Initial Chlorine  

2. pH 

3. Turbidity  

4. Temperature  

5. Electrical 

conductivity  

1. Pipe Diameter  
2. Distance  

3. Age of pipe   

 

 
Intervening variables  

Types of models 

Physical models  

(process –based or 
knowledge driven) 
 
1. EPANET  

 Single-reactant 
model 

 One-phase model 

 Constant-rate 
model 

Statistical  models  

(data driven) 
 
1. Multiple  linear  regression   
2. Lasso regression  
3. Ridge regression  
4. Principal component regression  
5. Decision tree  regression 
6. Random forest regression   
7. Artificial   neural network  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1   Introduction 

This chapter reviews past works on water quality modelling that are broadly divided 

into process (knowledge-driven) and statistical (data-driven) models (Gibbs et al., 

2019). Process models are developed based on the science of chlorine decay (Bowden 

et al., 2019; Vuta and Dumitran, 2019). In contrast, statistical models are developed 

from observed data of water quality parameters that influence residual chlorine decay 

in water distribution (Chirwa and Madzivhandil, 2017; Mahendrarajah, 2014; Bowden 

et al., 2019). Within each of these two broad water quality models, there are various 

sub-models. 

2.2   Characterization of water distribution parameters of chlorine decay 

Distance from the tank in the distribution system deteriorates water quality due to 

water age while high residence time increases formation of disinfection by-products 

(DBPs) (Shamsaei, Jaafar and Basri, 2013). Pipe length and residence time were also 

identified as influential factors of residual chlorine decay in water distribution 

(Chirwa and Madzivhandil, 2017). These observations suggest that distance (pipe 

length) is of crucial importance. Minimizing water pipe lengths in water distribution 

network design would limit loss of chlorine at distant water consumption points.  

2.2.1   Initial chlorine concentration of chlorine decay 

Initial chlorine concentration (ICC) affects the bulk decay rate of chlorine (Kb) such 

that low Kb guarantees high water quality (Karadirek et al., 2015). In the same line, it 

is known that Kb depends on water quality in water distribution network (Nono et al., 
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2019). This implies that ICC is an important parameter to be considered in predicting 

residual chlorine decay modeling in water distribution networks. Initial chlorine 

concentrations of 1.00-1.5 mg/l (Blokker et al., 2014) and 1.8 mg/l (Wu and Dorea, 

2020) can be sufficient. In Africa, ICC of 1.14 mg/l (South Africa) and 0.6 – 1.0 mg/l 

(Botswana) were reported by Madhivindhila and Chirwa (2017) and Nono et al. 

(2019) respectively. The low ICC at water treatment plants is a good strategy for 

avoiding formation of carcinogenic disinfection by-products (DBPs). However, low 

ICCs may result in residual chlorine below the lower limit of 0.2 mg/l as 

recommended by WHO (2014) if consumer water draw-off points are far away from 

water chlorination. A typical case of very low ICC of 0.85 mg/l was reported by 

Monteiro et al. (2017). Therefore, there is need to balance low ICC without 

compromising on residual chlorine at far ends of water distribution networks.  A 

sustainable solution for this is use of intermediate water tanks / reservoirs as 

secondary chlorination points. 

2.2.2   Turbidity and pH of treated water 

Turbidity below 5 NTU and pH under 8 are the two key water quality parameters to 

control free chlorine residual to achieve disinfection efficacy in drinking water (Branz 

et al., 2017). However, turbidity is believed to be an improper proxy for determining 

chlorine dosage (Wu and Dorea, 2020). This, therefore calls for a new approach of 

chlorine dosage that excludes turbidity as an input parameter.  

2.2.3   Temperature of treated water 

Reactive natural organic matter that influence slow decay phase after 30 minutes are 

temperature-dependent (Wu and Dorea, 2020).  Investigators like Zhang et al. (2016) 
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and Vargas et al. (2021) included temperature as key parameter in influencing water 

quality in water distribution systems. These are important observations although these 

researchers did not show how temperature influences chlorine decay. However, the 

influence of temperature on water age was related to empirical linear equation 

represented as T = 0. 0839.Age + 16.3 with R2 of 0.58 (Monteiro et al., 2017). This 

finding was significant in view of the moderate correlation between temperature and 

water age. The direct role temperature plays in chlorine reaction in terms of c-t 

(concentration-time) value in water treatment was emphasized by Garcia-Avila et al. 

(2020), Government of Sudan (2017) and WHO (2014).  Hassan et al. (2019) showed 

strong relationship between temperature and chlorine bulk reaction rate for different 

reaction orders as follows: R2 = 0.83 for n = 0,  R2 = 0.95 for n=2 and  R2 = 0.71 for n 

=2  where n = order of residual chlorine decay kinetics. 

2.2.4   Hydraulic transients in water distribution networks 

High flow velocities cause turbulence which is associated with low chlorine 

concentrations (Jamwal and Kumar, 2016; Kim et al., 2014; Vuta and Dumitran, 

2019). The case of velocity increase causing free chlorine decay because of increased 

mixing and transport of chemicals between bulk and wall in water pipes was advanced 

by Stoinov and Aisopou (2014). These findings are important in underscoring 

maximum flow velocity limits that regulatory agencies impose in design of water 

distribution networks. The guidelines for water infrastructure design manual of 

Directorate of Water Development (Uganda) (2013) is maximum velocity of 3.5 m/s. 

Water age of over 20 hrs have residual chlorine of less than 0.04 mg/l (Gibson et al., 

2019) which is below the lower limit set by WHO (2014). Water age that is a function 

of velocity emphasizes that the longer water stays in pipes, the more are the chances 
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for it to interact with pipe biofilm that consume and deplete chlorine. This implies that 

the design of water distribution network should ensure that treated water released from 

water treatment plant should reach consumer points within a day. 

Low pressures increase chlorine decay in water distribution network (Alsaydalani, 

2019). Similarly, Ataoui and Ermini (2017) found that pressure was the most 

important parameter (among pressure, velocity and chlorine concentration) in 

minimizing risk of low chlorine concentration at water demand nodes. This result 

emphasizes the need to operate water distribution system above regulatory minimum 

pressure. This means that the pressure at peak-hour must be above 1 bar (10 m) as per 

guidelines for water infrastructure design manual of Directorate of Water 

Development (Uganda) (2013).  

However, Hyunjun and Sanghyun (2017) claimed that transient events inhibit 

consumption of chlorine.  This disagrees with Stoinov and Aisopou (2014), Jamwal 

and Kumar (2016), Kim et al. (2014) and Vuta and Dumitran (2019). A 2-D (two-

dimensional) model to investigate the effect of transient events (changes in pressure 

and velocity) on chlorine decay was used by Hyunjun and Sanghyun (2017). This 2-D 

that is not real-life on 3-D model could have contributed to the fundamental difference 

in results. To compare model performance, evaluation by model performance metrics 

is necessary on 3-D model. 

2.2.5   Distance and residence time in water distribution networks 

Water quality deteriorates with distance due to water age and residence time that 

increases formation of disinfection by-products (DBPs) (Shamsaei and Basri, 2013; 

Tiruneh et al., 2019a). Pipe length and residence time were also identified to influence 
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residual chlorine decay in water distribution (Chirwa and Madzivhandil, 2017). 

Similarly, Kulkami et al. (2018) found that long hydraulic retention times increase 

nitrification and decay of monochloramine in gravity-fed water distribution systems. 

These observations are significant as they suggest that distance (pipe length) is of 

crucial importance. This, therefore means that shortening water pipe lengths in 

distribution network design limits loss of chlorine at distant water consumption points.  

2.2.6   Conclusion on chlorine decay parameters in water distribution network 

In conducting on-line water quality monitoring in water distribution systems for 

quality surveillance, Environmental Protection Agency (2018) advised that threshold 

analysis for parameter values should not surpass pre-defined thresholds within the 

normal range of values. The limitation of water quality parameters within pre-defined 

threshold values is a good practice to guarantee health and safety of water consumers. 

Low but adequate chlorine concentrations, electrical conductivities and turbidities 

ensure safe drinking water. This was demonstrated by Bowden et al. (2019) on 

velocity, temperature and turbidity as the only water parameters. Similarly, Cuesta et 

al. (2014) used water quality parameters of velocity, temperature and initial chlorine 

concentration as the only parameters. This trend illustrates the importance of water 

quality parameters more than water distribution physical parameters. 

2.3   Assessment of space-time decay of chlorine in gravity flow systems 

The two broad categories of residual chlorine decay models are process-based models 

and statistical-based models (Gibbs et al., 2019).  
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2.3.1   Process-based modelling of chlorine decay 

Process models that rely on chemical reaction kinetics are deterministic models 

(Soyupak et al., 2011). This suggests that process models do not account for 

probabilistic variations in water quality modelling in water distribution networks. This 

is a setback for process models because random fluctuations in water quality 

parameters are unavoidable in practice. Velocity and pressure were important 

hydraulic parameters that influence chlorine decay in water distribution (Hyunjun and 

Sanghyun, 2017). Therefore, probabilistic modeling of chlorine residual is important 

because of hydraulic transients that occur in water distribution. Process-based models 

that assume exponential decay kinetics were not yet fully understood (Vuta and 

Dumitran, 2019). Process-based models are difficult because of the imprecise apriori 

knowledge of chemistry and mathematics that govern chlorine behaviour in process 

models (Bowden et al., 2019). These findings illustrate that process modelling of 

residual chlorine in water distribution cannot be fully relied on.  

Uniform bulk reaction constant is one of the ways used in modelling chlorine decay in 

water distribution (Georgescu and Georgescu, 2012). This approach is potentially 

inaccurate because chlorine-reactive substances vary along water distribution mains. 

Therefore, assumption or use of constant chlorine decay is inaccurate and should be 

discouraged. The most common exponential decay model for residual chlorine in 

water distribution network is first-order decay kinetics (Gitu and Egbe, 2016; Nono et 

al., 2019; Vuta and Dumitran, 2019). This assertion contradicts Hyunjun and 

Sanghyun (2017) who advocated for as many as 14 higher order decay kinetics.  

Residual chlorine decay kinetics occurs mainly within the bulk of water flow (Castro 

and Neves, 2010; Vuta and Dumitran, 2019). This implies that bulk decay dominates 



15 
 

at the expense of wall decay.  However, Castro and Neves (2010) demonstrated that 

wall decay can contribute more than bulk decay in overall chlorine decay in water 

distribution networks. Therefore, underestimation of wall reaction can introduce large 

errors especially in metallic pipes. The basic form of first order exponential decay 

kinetics by Mahendrarajah (2014) and Bowden et al. (2019) is as in Equation 2.1. 

Ct = Co. exp (-Kbt) ………………………….…………………………… [2.1] 

where: 

C0 = initial Concentration of chlorine, (mg/l) 

Ct = concentration of chlorine at time t, (mg/l) 

Kb = bulk reaction co-efficient of chlorine, (hr-1 or day-1) 

t = time (Hr. or Day) 

Wall reaction co-efficient Kw that contributes to chlorine decay follow zero order 

decay (Vuta and Dumitran, 2019). The lack of sufficient knowledge of exponential 

decay solution for residual chlorine has been reported by Bowden et al (2019), Castro 

and Neves (2010) and Vuta and Dumitran (2019). In view of the claim of inadequate 

knowledge on determination of wall reaction co-efficient, Vuta and Dumitran (2019) 

recommended apriori calibration for wall reaction co-efficient. The relationship 

between total decay constant, bulk decay and wall decay was given by Jamwal and 

Kumar (2016) in Equation 2.2. 

Ktotal = Kb + Kw …………………………….…………………………… [2.2] 

where: 

Ktotal = overall decay constant (Day-1),  

Kb = bulk decay constant (Day-1), 

Kw = wall decay constant (Day-1), 
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2.3.1.1   Variants of process-based models of chlorine decay 

Several variants of process models for residual chlorine decay in water have been 

proposed. These are (1) single reactant (SR) model versus (2) double reactant (2R) 

model, (3) variable reaction rate constant model (VRC) versus (4) constant reaction 

rate model, (5) slow versus (6) fast models and (7) n-order chlorine reaction kinetics. 

The double-reactant (2R) model can be decomposed into fast and slow reactants 

(Fischer et al., 2011; Monteiro et al., 2017). This model deviates from the traditional 

single-reactant (SR) model that has been used in most cases. Fischer et al. (2011) 

argued that 2R model was simpler and generally more suitable than the SR model that 

uses single set of invariant parameters. The variable reaction constant (VRC) was 

preferred in favour of constant reaction models by Fischer et al. (2011) and Tiruneh et 

al. (2019b).  Reported 0% – 15% error between variable reaction rate and constant 

reaction rate models exist (Tiruneh et al., 2019b). This margin of error is substantial 

because it cumulatively contributes to high cost of chlorination. The variable rate 

reaction model is more realistic than the constant reaction rate constant model. This is 

because water quality and temperature that influence chlorine reaction vary in 

distribution networks. 

Arithmetic and harmonic averages and concentration-weighed aggregate reaction rate 

in reaction kinetics were used by Tiruneh et al. (2019a). The use of various means is 

good as it provides alternative approaches in chlorine reaction kinetics. However, 

there was no conclusive position on which of these is better. No universal chlorine 

decay model was suitable for all system conditions (Hyunjun and Sanghyun, 2017). 
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Considering many variants of process-based models for chlorine decay in water 

distribution, this observation by Hyunjun and Sanghyun (2017) seems to be true. 

Existence of several competing process-based chlorine decay models demonstrates 

lack of unanimity on current knowledge on science of chlorine decay in water 

distribution network. Therefore, preference of any of these process-based models to 

another cannot be made with good certainty. This situation tends to promote 

statistical-based models until when there is unanimity among the scientific community 

on process-based chlorine decay modeling. 

2.3.2.  Water quality softwares for modelling piped water flow  

Best practice requires development of EDSSs (Environmental Decision Support 

Systems) for managing the environment (Walling and Vaneeckhaute, 2020).                                

Therefore, water quality models can be considered to be EDSSs. Several water quality 

models like EPANET, OpenFLows WaterGEMs, WaterCAD, CivilDesigner exist. 

The requirements for a good water quality model include (1) interoperability, interface 

and graphical editing, (2) hydraulics operations, (3) model building and data 

connection, (4) model management, (5) result presentation, (6) optimization using 

genetic algorithms and (7) energy and capital cost management (US Environmental 

Protection Agency, 2022).  

EPANET is widely used globally, is free and primarily designed to model movement 

and fate of water constituents in water distribution system (US Environmental 

Protection Agency, 2022).  Other water quality models like WaterGEMs and 

WaterCAD also posses the required specifications for water quality modelling 

mentioned above. However, they were not designed primarily to model and monitor 
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movement and fate of water constituents in water distribution system movement and 

fate of water constituents in water distribution system. In this regard, EPANET has 

advantage over other water quality models because EPANET has in-built provision 

for monitoring the movement and fate of chlorine in water distribution system. 

2.3.3   Statistical modelling of chlorine decay 

Statistical-based models use verifiable independent data of parameters that influence 

chlorine decay to determine terminal residual chlorine as dependent variable at water 

consumer points (Bowden et al., 2019; Chirwa and Madzivhandil, 2017; 

Mahendrarajah, 2014). This suggests that statistical-based models seem to appeal to 

practical use more than process-based models. Examples of statistical models include 

linear regression models (Jones, 2014), principal component regression model (Jolliffe 

and Cadima, 2016), lasso and regression models (Melkumova and Shatskikh, 2017), 

decision trees (Louppe, 2014) and random forests (Louppe, 2014). 

2.3.3.1   Linear regression models 

Linear regression models are of the general form as shown in Equation 2.3 (Jones, 

2014).  

Y = β0 + β1x1 + β2x2 + β3x3 + ……+ βnxn ………….…………………………… [2.3] 

where: 

Y = response (outcome or dependent) variable,  

β0 = value of Y when all independent variables have zero value, 

βi = marginal change in Y due to unit change in xi, 

xi =  ith independent (predictor) variable, 

n = number of independent (predictor) variable. 
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Regression models are useful for descriptions and predictions (Jones, 2014). Predictor 

variables can be a combination of continuous and categorical variables (Jones, 2014).  

However, the outcome of regression models must be quantifiable (Jones, 2014). These 

conditions are applicable to statistical modeling of residual chlorine where water 

quality parameters as reviewed in Section 2.2 like initial chlorine concentration, 

turbidity, electrical conductivity, pipe diameter and pipe distance are all continuous 

variables. Model outcome of residual chlorine concentration is quantitative and 

measured in mg/l. 

The rule of thumb for a good regression model is that the number of predictors, n, 

should not exceed 10 to avoid multicollinearity between predictors (Jones, 2014). 

When sample size is small, it is difficult for a model to detect real relationships(s) 

even if such relationship(s) exist (Jones, 2014). Prediction accuracy of Ordinary Least 

Squares (OLS) linear regression increases when the number of predictors, k, is much 

less than the sample size, n, (Melkumova and Shatskikh, 2017). This is because of low 

variance when k˂˂ n (Melkumova and Shatskikh, 2017). One way to determine 

enough sample size is to ensure that the number of observations per predictor variable 

is at least 25 (Jones, 2014). This approach is important in determining the number of 

sample points in water reticulation network and number of repetitions of sampling on 

different days and at different times in order to generate adequate sample data for 

analysis. Statistical power is the probability of detecting underlying relationships in 

datasets when there is actual relationship and the minimum statistical power should be 

0.8 (80%) (Jones, 2014). 
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Construction validity in regression modeling is a form of internal validity for which    

relationships derived from data analysis exist (Jones, 2014). Construction validity in 

regression modeling can be ascertained by diagnostics of linearity (for systematic part 

of model), homoscedasticity and independence (for random part of model) (Jones, 

2014). Internal validity in regression modeling examines whether assumed 

relationships are causal (Jones, 2014). Internal validity is promoted by avoiding 

omitted variable bias and endogeneity (Jones, 2014). Omitted variable bias is 

avoidable by including as many as possible of all relevant predictors determined from 

domain knowledge of research problem (Jones, 2014). This is complied with by 

including all the water quality and system variables identified in Section 2.2. 

Endogeneity is the case of direct influence of response on a predictor (Jones, 2014). 

Among the water quality and system variables identified in Section 2.2, endogeneity 

does not arise. 

2.3.3.2   Principal component analysis regression models 

Principal component analysis (PCA) is a technique for reducing data dimensionality 

of large datasets in order to enhance data interpretation without losing much statistical 

information and variability (Jolliffe and Cadima, 2016). PCA works by creating new 

uncorrelated variables known as principal components (PCs) to maximize variance. 

(Jolliffe and Cadima, 2016). The PCs are defined from the pre-existing variables and 

are linear functions (linear combinations) of the original variables (Jolliffe and 

Cadima, 2016). 
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PCA is developed by SVD (Singular Value Decomposition) of centred data 

covariance matrix or centred data correlation matrix (Jolliffe and Cadima, 2016). The 

basic form of PCA models is as shown in Equation 2.4  (Jolliffe and Cadima, 2016). 

Sa − λa=0⇐⇒Sa=λa.………….…………………………… [2.4] 

where: 

S= covariance matrix,  

a = corresponding eigenvector, 

λ = corresponding eigenvalue of a. 

 
To avoid the problem of different scales and units of original variables, they must be 

standardized before their relationships are investigated in covariance matrix (Jolliffe 

and Cadima, 2016).  

PCA is a statistical method related to linear regression (principal component 

regression) (Jolliffe and Cadima, 2016). The main use of PCA is descriptive instead of 

being inferential (Jolliffe and Cadima, 2016).  Eigenvalues of eigenvectors of the 

centred data covariance matrix or centred data correlation matrix represent the 

variance of interest (Jolliffe and Cadima, 2016). When the number of PCs increase, it 

becomes difficult to interpret it because of the growing number of non-trivial 

coefficients (Jolliffe and Cadima, 2016). Rotation in PCA is a trade-off technique 

between interpretation and variance in PCA (Jolliffe and Cadima, 2016). 

2.3.3.3 LASSO regression models 

LASSO is an acronym of “least absolute selection and shrinkage operator” 

(Tibshirani, 2013). Lasso is a regularized linear regression model (Tibshirani, 2013). 

Regularization is the shrinkage (reduction) of the estimated beta coefficients of 

predictors in OLS regression model to improve predictive accuracy (Melkumova and 
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Shatskikh, 2017). Regularization is done by penalizing (i.e. reducing) the beta 

coefficients of predictors of OLS regression model. (Melkumova and Shatskikh, 2017; 

Tibshirani, 2013). The LASSO regularized beta coefficient is as shown in Equation 

2.5 by Tibshirani (2013).  

               βlasso = argmin ǀǀy-xβǀǀ2 + λ ∑j=1
p ǀǀβjǀǀ2                               .……….… [2.5] 

where: 

βj= predictor coefficient estimate of the jth predictor,  

x = predictor, 

λ = penalty (regularization) term which is a non-zero scalar quantity. 

p = number of predictors 

 
LASSO that is also known as L1 because it uses power (exponent) one of sum of beta 

coefficients in regularization (Tibshirani, 2013) shrinks some coefficients to zero and 

retains some (Tibshirani, 2013). In this regard, it performs the additional role of 

variable selection in a model (Melkumova and Shatskikh, 2017; Tibshirani, 2013). 

This suggests that LASSO is good to use in large samples. Cross-validation is the 

technique used to find the optimal (i.e. tuning) value of a parameter by running 

analysis on test (i.e. unseen) data to yield optimal performance metrics results 

(Melkumova and Shatskikh, 2017). 

2.3.3.4   Ridge regression models 

Unlike LASSO, ridge regression shrinks coefficients to small values but never reduces 

any to zero (Melkumova and Shatskikh, 2017). This means that both significant and 

insignificant predictors remain in a model. It also means that ridge regression model is 

good to use in sparse samples as it allows weak predictors to augment contribution of 
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the few strong predictors to ensure overall better prediction accuracy. The ridge 

regularized beta coefficient is as shown in Equation 2.6 (Tibshirani, 2013).  

               βridge = argmin ǀǀy-xβǀǀ2 + λ ∑j=1
p ǀǀβjǀǀ2              .……….…………… [2.6] 

where: 

βj= predictor coefficient estimate of the jth predictor,  

x = predictor, 

λ = penalty (regularization) term which is a non-zero scalar quantity, 

p = number of predictors 

Ridge regression that is also known as L2 because it uses power (exponent) two of 

sum of beta coefficients in regularization (Tibshirani, 2013). The cross-validation 

technique of determining the optimal penalty term is basically the same as for lasso. 

2.3.3.5   Decision tree regression models 

A DT (decision tree) is a directed graph in which information for decision-making 

starts from a root (a parent node) and moves unidirectionally to other parent node(s) 

until it ends at terminal node(s) (leaf or leaves or child nodes) where final decision is 

made (Louppe, 2014). At every parent node, a DT splits incoming information into 

two sub-spaces based on purity (homogeneity of data). Regression output at terminal 

and child nodes is then computed from the probability of nodal purity and nodal split 

value (Louppe, 2014). Figure 2.1 shows a schematic representation of a decision tree. 
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Figure 2. 1: Schematic representation of decision tree 

Source: Louppe (2014, p.28) 

The shorter a DT is (i.e. the shallower or smaller depth it has), the more interpretive it 

is even by less technical people (Louppe, 2014). Shallow DT depths suggest 

avoidance of overfitting a DT model. This property is helpful for quick decision 

making by less skilled personnel in water quality management. 

DTs are non-parametric as they do not need assumptions in modelling complex 

relations between predictor and response variables (Louppe, 2014). DTs are good for 

feature selection because they are robust to irrelevant and noisy variables (Louppe, 

2014).  This property is useful in assisting water managers decide on which chlorine 

decay parameters to focus on for control and management. DTs are also almost 

immune to outliers (Louppe, 2014).  

 2.3.3.6   Random forest regression models 

RFs (Random Forests) are collections of randomized decision trees (Louppe, 2014). 

Collection of randomized decision trees (DTs) reduces prediction generalization error 

in RF ensemble model by decreasing variance error in the bias-variance 

decomposition (Louppe, 2014).  This means that RFs are better models than DTs. 

However, DTs are very significant in context of RFs because they (DTs) are the 
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building blocks for RFs. RFs combines the individual predictions of DTs to produce 

better prediction output than for the individual DT output (Louppe, 2014). The 

regression prediction of RF is computed by averaging the individual predictions of the 

aggregated DTs as shown in Equation 2.7 (Louppe, 2014). 

……………………… [2.7] 

where: 

m = start number of decision tree 

M = number of decision trees, 

φ= decision tree parameters 

ψ = average of randomized decision tree performance 

ɵi = individual performance of the ith decision tree 

 

2.3.3.7   Artificial neural networks 

Artificial neural networks (ANNs) are structures composed of dense interconnected 

nodes (also known as neurons) that perform massive computations on data (Basheer 

and Hajmeer, 2000; Chau, 2006). ANN are biologically inspired computer 

programmes designed to mimic functioning of human brain (Agatonovic-Kustrin and 

Beresford, 2000). The concept of ANNs was thus developed from human brain 

perceptrons (Basheer and Hajmeer, 2000). The artificial neurons which are data 

processing elements are connected with weights to constitute the ANN structure 

organized in layers (Agatonovic-Kustrin and Beresford, 2000). Each neuron has a 

weighted input, transfer function and output (Agatonovic-Kustrin and Beresford, 

2000). Figure 2.2 shows a simplified basic structure of (a) a single perceptron and (b) 

multi- layer perceptron MLP ANN. 
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(a)                                                                               (b) 

 

Figure 2. 2: Schematic of (a) single perceptron and (b) MLP (multi- layer perceptron) 

ANN (artificial neural network)  

Source: Basheer and Hajmeer (2000, pp. 5, 7). 

 

The behaviour of an ANN is influenced by the transfer function of its neurons, 

architecture and learning rule (Agatonovic-Kustrin and Beresford, 2000).  A transfer 

function works on activation signal of neuron to produce output signal that is passed 

to the next neuron in the next layer (Agatonovic-Kustrin and Beresford, 2000).  

Weights signify the importance of each input in contributing to activation of a neuron 

(Agatonovic-Kustrin and Beresford, 2000; Basheer and Hajmeer, 2000). Desirable 

features of ANN are (1) non-linearity, (2) high-parallelism, (3) fault and failure 

tolerance, (4) learning ability and (5) generalization capability (Basheer and Hajmeer, 

2000). Non-linearity that is introduced by transfer functions (Agatonovic-Kustrin and 

Beresford, 2000) allows better fit to data (Basheer and Hajmeer, 2000). Noise 

tolerance allows better predictions in the presence of uncertain data and measurement 

errors (Basheer and Hajmeer, 2000). High parallelism means fast data processing, 

learning means adaptation, updating and modification of internal ANN structure to 
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changing environment while generalization allows model application to unlearned 

data (Basheer and Hajmeer, 2000).  

The weighted sum of inputs constitutes the activation of a neuron (Agatonovic-

Kustrin and Beresford, 2000). Activation of a neuron happens when bias b which is 

the threshold excitation minimum is exceeded (Basheer and Hajmeer, 2000).  After 

activation (excitation or firing) of/by a neuron, the combined weighted sum of inputs 

is passed through a transfer function to another neuron in the next layer (Agatonovic-

Kustrin and Beresford, 2000; Basheer and Hajmeer, 2000). The mathematical 

formulation for activation or excitation is as shown in Equation 2.8 (Basheer and 

Hajmeer, 2000). 

…………...……………………… [2.8] 

where: 

y = output,  

xi = ith input 

wi = weight of ith input 

b = bias of neuron 

n = Number of inputs 

Activation (excitation) occurs when y = 1 and activation fails (inhibition) when y = 0 

(Basheer and Hajmeer, 2000). ANN is a heavily parametrized system (Agatonovic-

Kustrin and Beresford, 2000).  This assertion is correct because ANN has many 

parameters that include input weights, neuron bias, activation functions, number of 

neurons per layer, number of layers, learning rate, number of iterations, etc. The 
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permutation between neurons per layer and number of layers alone yields large 

number of neurons in ANN. Since the minimum number of layers in MLP is three, 

there are potentially many weights. The assertion of Agatonovic-Kustrin and 

Beresford (2000) that large training dataset is required in ANN is thus correct. 

Backpropagation allows the fine-tuning of the weights and bias parameters of ANN 

(Agatonovic-Kustrin and Beresford, 2000). This is done by using the learning rate 

where prediction errors in each forward pass are compared with the pre-known target 

(output) values (Agatonovic-Kustrin and Beresford, 2000; Basheer and Hajmeer, 

2000).  

2.4   Comparison of performance of models that predict residual chlorine  

Performance of EPANET model for residual chlorine at water distribution end-points 

in Algeria were evaluated by RMSE (root mean square error) and correlation 

coefficients by Bensoltane et al. (2018). Similarly, Bowden et al. (2019) in Australia 

used RMSE in deciding that GRNN chlorine models were better than MLR chlorine 

models. Similar study in Czech Republic showed that RMSE of ANN models were 

better (lower) than those of EPANET (Cuesta et al., 2014). However, in Ecuador, 

Nash-Sutcliffe Efficiency (NSE) index and correlation coefficients were used (Garcia-

Avila et al., 2021). In Australia, RMSE, MAE (mean absolute error) and Max 

(maximum absolute error) methods were used to evaluate ANN models at 95% 

confidence interval (Gibbs et al., 2019). Non-linear neuro-fuzzy algorithms were 

found to be 1.63 times better in performance than multi-linear regression models in 

South Korea (Lee et al., 2016). This finding suggests that non-linear algorithms 

handle non-linear behaviours better. 
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These studies demonstrate that each model performance metric has some merits and 

demerits. Therefore, it is a good practice to use multiple metrics to evaluate models. 

2.5   Identification of model(s) for chlorine decay in gravity water system 

In Section 2.3, various performance metrics were used to evaluate the goodness of fit 

of chlorine decay models. The importance of these performance metrics is best 

appreciated when more than one is used for effective comparison and decision 

making. Therefore, all of these would be used in comparing and deciding which 

model to choose.  

2.6   Conclusion on literature review 

Conclusions on physical and statistical modelling were as follows: 

2.6.1   Conclusion on physical (process-based or knowledge-driven) modelling 

First-order chlorine decay kinetics is the dominant model used in process-models for 

residual chlorine decay in water distribution networks/systems. First-order decay 

kinetics is also mainly used in single-reactant models. The reason for first-order 

single-reactant models is their simplicity and insignificant deviation in performance 

when compared to higher-order, double-reactant, variable reaction and parallel first-

order models according to majority of researchers. There subjectivity in preferring 

first-order chlorine decay kinetics to higher-order chlorine decay kinetics due to 

simplicity may be erroneous. This is because many researchers who use first-order 

chlorine decay kinetics admit current lack of adequate knowledge on the underlying 

processes in process models for residual chlorine decay. This situation demonstrates 

the challenge of physical models in residual chlorine decay modelling. 
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2.6.2   Conclusion on statistical (data-driven) modelling 

From literature review, high prediction accuracy due to low variance in linear 

regression models is achievable when the number of predictors is much less compared 

to sample size. Quantitatively, the p/n ratio should be small (˂ 1/25) or n/p ratio 

should be large (> 25). This also helps in capturing the underlying relationships, 

patterns and trends in data. The number of predictors also should not exceed 10 (p ˂ 

10) to avoid multicollinearity. This rationale is helpful as one of the ways to determine 

sample size in a study that has regression modelling. Therefore, this method was used 

to triangulate sample size in chapter three. 

Principal component analysis (PCA), lasso regression, decision tree and random forest 

models do variable (feature) selection in regression modelling. Standardized beta 

coefficients and associated p-values also can suggest importance of predictors in 

regression modelling. Ridge regression is limited to modelling small sample data. It 

does this by retaining all variables such that weak predictors augment the few strong 

predictors so that the overall prediction is better than if any of the weak predictors 

were eliminated. The list of statistical models reviewed in this work is not exhaustive. 

What has been considered here are deemed adequate for modelling residual chlorine 

decay in water distribution network. The statistical models considered include 

ordinary least multiple linear regression models, regularized (i.e. LASSO and ridge) 

regression models, artificial neural networks and decision tree and random forests. 

These models have been used variously and singularly for residual chlorine decay 

modelling in water distribution system. However, their respective performances have 

not been compared at the same time on the same water distribution system for 

decision making.  
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The challenge in statistical models is on the choice of performance metric whose 

effectiveness depends on (1) type of data, (2) data size, (3) data distribution and (4) 

algorithms that these statistical models use. Another challenge with statistical models 

is their very nature of being data-driven models. This means that there should be large 

datasets to ensure that there is variability in the different variables for underlying 

relationships and patterns to be revealed. The challenge is big in tree-based models but 

bigger in artificial neural network modeling where large training data is required. 

However, the disagreement among the scientific community on performance of 

statistical models is not as high as that on process (physical) modeling. The next 

chapter of methodology covers the collection of these chlorine decay parameters and 

their analyses.  
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CHAPTER THREE 

METHODOLOGY 

3.1   Introduction 

This research used observational and comparison case research designs to predict 

space-time decay of residual chlorine in gravity water flow scheme. Quantitative 

observed field data was used to predict residual chlorine concentrations at various 

points and times in water distribution network. 

3.2   Location of research area 

This research was conducted on Lirima Gravity Flow Scheme located in Manafwa and 

Namisinde districts in the Mount Elgon region in Eastern Uganda. This gravity 

scheme is owned and operated by National Water and Sewerage Corporation (NWSC) 

which is a government parastatal. Figure 3.1 shows the water transmission main from 

treatment plant. 
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Figure 3. 1: Lirima gravity transmission water main from water treatment plant 

 

3.3   Types of data 

The parameters identified in chapter 2 (literature review) that influence residual 

chlorine decay in water distribution networks were broadly divided into water quality 

and system (physical) parameters. Water quality data collected included residual 

chlorine concentrations, pH, turbidity and electrical conductivity. Water distribution 

system parameters collected were distance (length) of sample points from head/start of 

water distribution/transmission lines, pipe size (diameter), flow velocity and pressure. 
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Data was collected from 8th to 20th February 2021. The dry weather during this time 

enabled access to water distribution network in this difficult and rugged terrain. 

3.4   Data collection 

Data collection was managed as follows: 

3.4.1   Data collection strategy 

At least two runs (morning and afternoon) were conducted each day on a particular 

distribution main. On each run, data was collected at sampling points at approximate 

intervals of 1 Km. This spacing interval was based on the advice of NWSC that closer 

intervals may not reveal significant variations in residual chlorine concentrations. 

Data collection was replicated on different days to account for variations in study data. 

Replication of data on different days was also a strategy to increase on sample size of 

study data. A total of 128 datasets were collected. Appendix Tables A.2, A.3, A.4 and 

A.5 contain the GPS co-ordinates of water transmission and distribution mains, 

sampling yard taps and water tanks (break pressure tanks and intermediate reservoirs) 

respectively. 

3.4.2   Data collection procedure  

Water was sampled at clear water tank outlets, wash outs and nearest functional yard 

taps that were on direct supply lines from water distribution and transmission mains. 

The yard water taps from which water was sampled were those that were very close to 

distribution mains within off-sets of less than 5 m as shown in Figure 3.2. It was 

assumed that water quality parameters at yard taps close to distribution networks 

would not have varied significantly from the water in the nearby distribution lines 

hence would be practically representative of water quality parameter values.  
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Figure 3. 2: Yard taps from adjacent distribution water mains of Lirima gravity scheme 

3.4.3   Data collection personnel 

The research team comprised four people as follows: (1) research student, (2) NWSC 

water quality analyst and (3) two NWSC plumbing technicians. The research student 

coordinated field data collection and ensured that correct and standard data collection 

procedures were observed in order to obtain quality data. The researcher also picked 

GPS coordinates of pipeline mains and water taps. The water quality analyst sampled 

and analysed water quality parameters at each sample point. The plumbing technicians 

traced and identified pipeline and yard tap locations for picking GPS coordinates and 
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water sampling. The plumbing technicians also would fix pressure gauge on water 

taps (faucets) for pressure testing and remove it for reuse at subsequent sample points. 

3.5   Data collection instruments 

Field data was collected using the following portable instruments as summarized in 

Table 3.1 whose photographs are shown in Plate 3.1. 

Table 3. 1: Instruments used for data collection 

Item Instrument Purpose 

1 Lovibond MD 600 digital meter 1. Tests residual chlorine in the range of 0-6 

mg/l 

2. Tests turbidity (FAU) 

2 pH and Conductivity 901 digital 

meter 

1. Tests temperature (°C) 

2. Tests pH 

3. Tests electrical conductivity (μS) 

3 Pressure gauge EN837-1 1. Tests pressure (Bars) 

4 Garmin GPSMAP 64s 1. Picking GPS coordinates of water mains 

and yard taps 

5 Standard 1 Liter plastic bottles 1. Water sampling 

6 Standard ice box 1. Preservation of sampled water 

7 Calibrated 5 Liter plastic jerrycan 1. Water flow rate measurement 

8 Stop-watch 1. Timing filling of calibrated 5 Liter plastic 

jerrycan  

9 Area topographic map  1. Tracing and identification of water mains 

 

The details about the photographs are as summarized in Table 3.2. 
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Table 3. 2: Details of water sampling and testing photographs 

Item Plate Detail 

1 a Signboard at Lirima Gravity Water Treatment Plant 

2 b Typical cylindrical break-pressure tanks and water reservoirs 

3 c Atop Butiru water tank overlooking Mbale-Lwakhakha Road  

4 d Water tank roof access to tank interior 

5 e Testing on-line water sample at Musiye wash-out 

6 f Lovibond MD 600 digital meter test kit 

  Picking GPS coordinates  of water distribution line 

7 g At Butiru Clinic on Butiru-Manyeke Water Line 

8 h On exposed transmission line to BPT 3 

9 i At Gate valve at Magale Town Council 

10 j At T-junction to Bumbo Town 

  Pressure-testing and water flow rate (velocity) testing 

11 k Pressure-testing at Bunyangabo cell 

12 l Pressure-testing at Bunyangabo cell 

  Water sampling at Natshekhe wash-out on Musiye-Nalukwade line 

13 m Accessing and cleaning of Natshekhe wash-out  

14 n Draining-off accumulated dirt and dirty water  

15 o Clean water  

16 p Sampling clean water  

17 q Clean water 
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Plate 3. 1: (a) – (q): Lirima gravity water sampling and testing 
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3.6   Data analysis 

EPANET 2.0, ArcGIS, Python, MATLAB and IBM SPSS Version 25 softwares were 

used to analyze data.  Analysis of same aspect using different softwares was meant to 

triangulate analysis results. Triangulation helps in decision making on whether there 

was consistency on analysis results obtained from different analytical tools. 

Correlation analysis was used to investigate relationship of water and system 

(physical) parameters mentioned in Section 3.3 with residual chlorine decay. Mass 

continuity equation was used to determine the flow rate and velocity in distribution 

mains by using time to fill a calibrated five (5) liter jerrycan from yard taps of known 

cross-sectional areas. Flow rate (flow rate) was used as a proxy variable for water age 

because actual water age required tracers to use. Laboratory and field test results for 

chlorine decay constants were compared in deciding which one to use in chlorine 

decay reaction.  

3.6.1   Data analysis methods for specific objective number one 

The influence of water quality and water system parameters was investigated using 

triangulated methods of (1) decision tree analysis importance score, (2) random forest 

ensemble importance score, (3) principal component analysis equamax rotated matrix 

loadings and communalities and (4) p-values and standardized beta coefficients of 

independent variables in backward elimination in ordinary least squares regression 

models. 

3.6.2   Data analysis methods for specific objective number two 

Mathematical models and an algorithm for analyzing space-time decay of residual 

chlorine in water would be as follows: 



40 
 

3.6.2.1 Mathematical models for space-time decay of residual chlorine in water 

Space-time decay of residual chlorine in gravity water flow system was determined 

using six models of (1) linear, (2) logarithmic, (3) inverse, (4) quadratic, (5) cubic and 

(6) Weibull models for the statistical modelling of space-time decay. Physical 

(process) modelling of space-time decay of residual chlorine that is based on chlorine 

decay coefficients (constants) was investigated using (1) laboratory determined 

chlorine decay coefficients (constants) and (2) single-reactant chlorine decay 

coefficients (constants) based on the in-situ residual chlorine decay in water pipelines. 

3.6.2.2 Algorithm for space-time chlorine decay in gravity water distribution system 

This section presents an algorithm for secondary chlorination in gravity water 

distribution network. 

The eight (8) steps of the algorithm are as follows: 

1. Given a gravity water distribution pipeline that begins from start-point A 

(upstream) and distributes water to end-point B (downstream). 

2. The pipeline of total length L comprises pipe segments Li such that ∑ Li = L. 

3. At start-point A, water is supplied from a reservoir tank that with water at depth h. 

4. From hydraulics and assuming negligible exit head loss, the velocity v in the first 

pipe segment L1 is: 

  v = √ 2gh. …………………………………………………………………..…[3.1] 

5. From mass continuity equation, velocity in two connected pipe segments Li and 

Li+1 with functional arguments (Length: L, velocity: V, Area: A, diameter, d) is 

related as follows: 

A1 V1 = A2V2 ,   A1  = π d1
2/4,    A2  = π d2

2/4    and   V2 = V1 d1
2/ d2

2   

6. The time of travel ti in a pipe segment Li from start-node (upstream) to end-node 

(downstream) with water travel velocity Vi is ti = (Li / Vi). 
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7. At intermediate (i.e. shared) nodes, the residual chlorine concentration [Cl]shared-

node is such that: 

[Cl]end-node of pipe Li = [Cl]start-node of pipe Li+1 

8. Using first-order (n=1) exponential chlorine decay equation of Ct = C0 exp (Li 

Ki/Vi) can be applied to any pipe segment Li from where Ki is the single-value (i.e. 

Ktotal = Kb + Kw) chlorine decay constant. The single-value Ki of n=1 is that 

calibrated by demand flow and cross-validated by chlorine residuals at nodes in 

EPANET hydraulic analysis. 

These eight (8) steps of the algorithm that repeat for each pipe segment can be 

performed in a “for loop” in a computer programming language. The attributes of pipe 

segments can be defined in global variables as sequence of objects in a list [] or 

dictionary {}. 

To operationalize this secondary chlorination algorithm in a computer programme, a 

function for determining residual chlorine at downstream nodes can be defined. 

Arguments / parameters of (Length: L, velocity: V, Area: A, diameter: d, Single-value 

decay constant: K) would be passed into the function. A “for loop” with “if-else” 

control structure of (1) if initial chlorine dosage was less than 3 mg/l, continue else 

break (i.e. stop) and return would be included in the function block statement. The 

limit of 3 mg/l (Nouri et al. 2017) minimizes formation of carcinogenic disinfection 

by-products. (2) A nested loop within the first loop if velocity of flow was less than 

3.5 m/s (Directorate of Water and Development (Uganda) 2013), continue else break 

(i.e. stop) and return. 

3.6.3   Data analysis methods for specific objective number three 

Comparison of performance of physical and statistical models in predicting chlorine 

decay in water systems was evaluated using (1) goodness of fit metrics of (a) 
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Pearson’s coefficient r, (b) R-squared, (c) adjusted R-squared and (d) standard error of 

model estimate. Performance accuracy metrics used were (1) RMSE and (2) 

maximum absolute error. All these evaluations were estimated at minimum of 95% 

confidence interval and maximum of 5% level of significance. 

3.6.4   Data analysis methods for specific objective number four 

The choice of appropriate model for use in optimizing residual chlorine concentrations 

in gravity water system was based on considerations / factors of (1) generalizability of 

model determined from the performance and comparison of scores of train and test 

datasets, (2) dimensionality control in terms of the number of control predictors in the 

model for determining final residual chlorine and (3) interpretability of model in terms 

of the scale of the resulting predictors. 

3.7   Ethical considerations 

Three deliberate approaches of permission, collaboration with utility area field 

officers and proxy variable for water age were used to promote ethical considerations 

in this research. 

3.7.1   Permission for research 

Kyambogo University sought for permission from NWSC headquarters in Kampala 

(as in Appendix Letter A.1) for study on Lirima gravity flow scheme. Permission for 

the study was granted by the Research and Development unit of NWSC (see Appendix 

Letter A.2,).   

3.7.2   Collaboration with utility area field officers 

The NWSC local area office in Tororo attached its key staff like the senior water 

quality technician and plumbers in identifying locations of water pipes and associated 
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appurtenance like wash-outs. These key staff also participated in carrying out both 

laboratory and on-line water quality tests. This approach ensured easy access to 

sampling points and management of emerging concerns of water consumers.  

3.7.3   Proxy variable for water age 

Water age was identified as one of the confounding variables as identified in Section 

1.8 and Figure 1.2 on conceptual framework. Calculated water velocity was used as a 

proxy variable for water age. Tracers which produce more accurate results were not 

used due to cost and public health implications. 

3.8   Summary of methodology 

Figure 3.3 summarizes the linkage between methodology and the preceding chapters.  
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Figure 3. 3: Methodology for comparing performance of chlorine decay models   

 

4. Model Residual Chlorine decay 

in water distribution network 

4.2.7   Is testing 
complete? 

4.1.3   Develop Hydraulic Models by EPANET 2.0 MSX 

for four permutations for the two most common reaction 

kinetic orders pairs of (n=1, n=2) for both constant and 

variable decay of residual chlorine decay in water 
distribution networks:  (1,0), (1,1), (2,0) and (2,1) 

 

4.2.8   Select best model 

4.2.9   Evaluate Performance of final ANFIS model by:                

(a)  RMSE, (b)  MAE and (c) Maximum Absolute Error 

5   Compare Performance of Process models and 
Statistical models by: 

(a)  Root Mean Square Error (RMSE)  

(b)  Mean Absolute Error (MAE) 

(c)  Maximum Absolute Error 

4.2.1   Divide total data into: 

1. Training data,      65% 

2. Testing data,        15% 

3. Validation data,   20% 

 

4.2.2   Load training data into Python or MATLAB 

4.1   Process-based (Physical) Models 

1.  First-order decay models 

2.  Single-reactant (SR) models 

3.  Constant decay models 

4.1.1   Determine Chlorine Reaction Constants: 

1. Bulk reaction constant, Kb, from lab bottle test 

2. Wall reaction constant, Kw 

3. Total reaction constant, Kt  

4. Calibrate Kw by Kw = (Kt - Kb) 

        

4.2.3 Set membership function of input parameters in ANFIS 

 

4.2.4 Is training 

complete?

4.2.5   Evaluate training results 

4.2.6   Input testing data 

 

4.1.2   Input hydraulic parameters in EPANET 2.0: 

1. William-Hazen equation 

2. C-values of pipe materials: 130 (PVC), 120 

(ductile iron), 140 (steel), 100 (cast iron). 

3. Extended period of simulation (EPS) = 72 Hrs 

4. Specific gravity = 1. 

5. Relative viscosity = 1. 

6. Maximum No. of trials = 50. 
 

1. Geographic Partition of 
Lirima Gravity Flow Scheme 

Divide the flow scheme into: 

1. Mufutu water tank zone 

2. Butiru water tank zone 
3. Manyeke water zone 

2.  Identify Parameters for Residual 

Chlorine Decay in Water Distribution 

1. Initial chlorine concentration, C 

2. Location of sample point, L 

3. Water age, Hrs 

4. Pipe diameter, D 

5. Pipe age, Yrs 

6. Flow velocity, V 
7. Flow pressure, P 

3. Sample for chlorine from: 

1. Water tank outlets 
2. Wash-outs 
3. Yard taps 

4.2   Statistical-based Model 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1   Introduction 

This chapter presents the findings of this research and is structured as follows: (1) 

Univariate analysis of chlorine decay parameters, (2) bivariate analysis of 

relationships between chlorine decay parameters with chlorine, (3) process model 

calibration of residual chlorine decay in Water Distribution Networks (WDN) by 

EPANET, (4) performance analysis of EPANET-based process model in predicting 

residual chlorine concentration in WDN, (5)  data-driven model calibration of chlorine 

concentration in WDN by multi-variate regression analysis and multi-perceptron 

sequential deep neural network analysis. (6) Comparison of process model and data-

driven model(s) in predicting residual chlorine concentration in WDN and (7) scenario 

analysis performed within WHO (2011) regulated chlorine concentrations of 0.2-5.0 

mg/l are then presented. This is to enable decision on (i) chlorine dosage at treatment 

plant and (ii) need of secondary chlorination and if so at what network location(s). 

The results under each of these sections are discussed after their presentation. The 

chapter concludes with summary of key results and proposed future action. 

4.2   Univariate analysis results for parameters of chlorine decay  

The summary statistics from Python analysis for four key water quality parameters 

(temperature, pH, turbidity and electrical conductivity), two system parameters 

(length, pipe diameter) and two hydraulic parameters (pressure and velocity) are as 

presented in Table 4.1. 
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Table 4. 1: Descriptive statistics for residual chlorine decay parameters in water  

 
 

count 

 

mean 

 

std 

 

min 

 

25% 

 

50% 

 

75% 

 

max 

Water quality 

parameter 
   128                 64.50 37.09 1.00 32.75 64.50 96.25 128.00  

Residual 

chlorine (mg/l) 
   128                                                0.14 0.07 0.00 0.09 0.14 0.19 0.37  

Distance (Km) 128              2.50 2.2 0.01 0.67 1.71 4.60 7.50  

travel time (min) 128 46.13 42.63 5.00 15.00 30.00 65.00 190.00  

Diametre (mm) 128 108.28 51.92 50.00 80.00 100.00 100.00 250.00  

Turbidity (NTU) 128 0.96 0.77 0.00 0.75 1.07 1.07 5.00  

Electrical 

Conductivity 

(μS/cm) 

128 70.01 2.53 65.40 68.38 70.01 70.03 78.50  

pH 128 7.53 0.17 6.71 7.48 7.53 7.60 7.83  

Temperature 
(℃) 

128 23.98 1.06 20.10 23.59 23.98 24.31 27.05  

Pressure (Bar) 128 2.00 1.08 0.00 1.73 2.00 2.00 6.0  

Velocity (m/s) 128 0.04 0.02 0.001 0.02 0.04 0.05 0.10  

Table 4.1 shows that the mean residual chlorine of 0.14 mg/l is below the lower limit 

of 0.2 – 0.5 mg/l specified by WHO (2014). The pH that ranged from 6.71 – 7.83 were 

within the acceptable range of 6.5 – 8.5 as specified by US EAS 12 (UNBS, 2014). 
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4.3   Compliance of parameters of chlorine decay for modeling 

Table 4.2 lists the test statistics for linearity, homoscedasticity (constant variance) and 

independence as necessary conditions for normally distributed data to satisfy in 

modelling. 

Table 4. 2: Data quality tests for residual chlorine decay parameters in water  

 

 

 

 

 

Item 

 

 

 

 

Independent 

variables 

Compliance test statistics 

1. 

Linearity 

 

      
(Pearson’s   r) 

3.  

Homoscedasticity 

 

 

(Limits of Z)  

4. 

Independence 

 

       

         (VIF) 
     

1 Initial 

chlorine 

 0.69  1.35 

     

2 Distance - 0.11 [-2, 2] 3.38 

     

3 travel time - 0.08 [-1, 3] 2.75 

     

4 diametre - 0.09 [-2, 3] 1.95 

     

5 turbidity - 0.02  1.16 

     

6 Electrical 

conductivity 

- 0.20 [-2, 2] 1.15 

     

7 pH   0.15  1.10 

     

8 temperature           - 0.21 [-3, 2] 1.41 

     

9 pressure             0.03 [-2, 3] 1.64 

     

10 velocity           - 0.17 [-2, 2] 1.20 
 
VIF is Variable Inflationary Factor that measures multicollinearity between independent variables in a regression 

model, Z = Standardized Z scores  

Table 4.2 shows that all independent variables are linearly correlated with final 

chlorine. The independent variables were normally distributed. The variance of the 

independent variables were also fairly uniform as they all lie within the restricted 

maximum residual limits of [-3, +3]. The independent variables are unavoidably 

autocorrelated because of their large number of 10. However, the autocorrelation 

between the independent variables are tolerable as they all are below variable 
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inflationary factor of five. These independent variables therefore qualified for 

modelling residual chlorine decay in drinking water reticulation. 

4.3   Characterization of water parameters in relation to chlorine decay 

This section presents and discusses the results for specific objective no. 1 which was 

“to characterize gravity water distribution parameters in relation to chlorine decay”. 

The associated research question for this objective was “Which water quality and 

water system parameters influence space-time decay of chlorine?” The relationship of 

each parameter of chlorine decay in water distribution system is summarized by (1) 

scatter plots in Figure 4.1 and (2) correlation matrix in Table 4.3. 

4.3.1   Variation of chlorine decay with water quality and water system parameters  

The scatter plots of each parameter of chlorine decay with residual chlorine 

concentration in water distribution are as in Figure 4.1. 
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Figure 4. 1: Scatter plots of residual chlorine decay parameters in water distribution  

 

For significance in prediction, an independent variable should have Pearson’s 

correlation coefficient r > 0.3. R2 and R-squared are used interchangeably to mean the 

same thing. However, in order to increase model performance by avoiding too few 

a)

 

b) 

 

c) 

 

d) 

  

e)  

 

f) 
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predictors, independent variables with R2 values close to 0.3 can be included such as 

diametre of water pipe. From Figure 4.1 above, (1) distance from water tank and (2) 

water travel time qualify to be predictors. 

4.3.2   Correlation analysis of parameters of chlorine decay  

The correlation matrix of chlorine decay parameters with residual chlorine in water 

analyzed by Python is as presented in Table 4.3 as follows: 

Table 4. 3: Correlation matrix of water quality and water system parameters with chlorine  

 
RC 

 

IC 

 

dist tt dia tur EC pH temp pres vel 

RC (mg/l) 1.00 
 

         

IC (mg/l) 0.69 1.00 
  

       

Dist (Km) - 0.11 0.30 1.00 
 

       

tt (min) - 0.08 0.31 0.71 1.00        

  Dia (mm) - 0.09 0.20 0.63 0.52 1.00 
 

     

 tur (NTU) - 0.02 - 0.07 - 0.03 0.05 0.08 1.00      

EC    

(µSiem-1) 
- 0.20 - 0.05 -  0.05 -0.06 - 0.10 - 0.29 1.00 

 
   

pH 0.15 0.11 0.14 0.17 0.12 0.03 -0.11 1.00    

 temp (℃) - 0.21 - 0.21 - 0.05 - 0.002 0.05 - 0.10 0.21 -0.06 1.00 
  

 pres (Bar) 0.03 0.19 0.31 0.17 0.02 - 0.11 -0.15 0.17 0.23 1 
 

 vel (m/s) -0.17 - 0.07 - 0.03 -0.004 -0.06 -0.01 -0.15 0.20 -0.001 0.32 1 

Legend: 

RC= residual chlorine, IC= initial chlorine, dist = distance, tur = turbidity, EC= electrical conductivity, 

temp= temperature, pre= pressure, vel = velocity, tt = travel time, dia = diameter 

4.3.3   Tree-based analysis of importance of residual chlorine decay parameters  

The importance of residual chlorine decay parameters in decision tree and random 

forest models are as shown in Figure 4.2 (a) and (b). 
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(a) Feature importance score from decision tree model 

 

(b) Feature importance score from random forest model 

Figure 4. 2: Tree-based importance of parameters of residual chlorine decay 

Figure 4.2 demonstrates that water quality parameters contribute more to residual 

chlorine decay than system parameters. Water quality parameters are not as easily 

controllable as system parameters that are mostly fixed after construction of water 

infrastructure.  
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4.3.4   Statistical analysis of importance of residual chlorine decay parameters  

The importance of residual chlorine decay parameters was analyzed by ordinary least 

squares regression and principal component analysis as shown in the following 

respective sections. 

4.3.4.1   Backward elimination of importance of chlorine decay parameters  

The importance of residual chlorine decay parameters analyzed by statistical methods 

in ordinary least squares regression model are as shown in Table 4.4 and Table 4.5. 

Model 1 in Table 4.4 (a) and (b) from IBM SPSS V25 analysis presents model 

summary and coefficients of linear regression with all the 10 independent variables. 
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      Table 4. 4: Linear regression model for all independent variables 

(a)  Model summary 
 

Model R R 

Squared 

Adjusted 

R 

Squared 

Std. Error of the Estimate 

1 0.836a 0.699 0.672 0.0422 

a. Predictors: (Constant), velocity, turbidity, diametre, initial chlorine, pH, EC = electrical 

conductivity, temp, pressure, travel time, distance 

 

 

(b)  Model coefficients 
 
  Unstandardized 

coefficients 

Standardized 

coefficients 

 Collinearity 

statistics 

 Model 

              1 

 

  B 

Std.  

Error 

 

Beta 

 

t 

 

Sig. 

 

Tolerance 

 

VIF 

 (Constant) - 0.059 0.229  - 0.257 0.798   

1. initial chlorine 0.563 0.041  0.816 13.740 0.000 0.742 1.347 

2. distance - 0.005 0.0003 - 0.162 -1.718 0.089 0.296 3.381 

3. travel time - 0.001 0.000 - 0.283 -3.331 0.001 0.363 2.752 

4. diameter -3.890E-5 0.000 - 0.028 - 0.386 0.700 0.513 1.948 

5. turbidity - 0.001 0.003 - 0. 001 - 0.191 0.849 0.864 1.158 

6. EC - 0.006 0.002 - 0. 019 -3.469 0.001 0.871 1.148 

7. pH 0.071 0.024    0.160 2.980 0.004 0.908 1.101 

 8. temperature 0.001 0.004   0.010 0.160 0.873 0.711 1.406 

9. pressure -5.041E-5 0.005 - 0.001 - 0.011 0.991 0.611 1.636 

10. velocity - 0.670 0.0242 - 0.155 -2.766 0.007 0.835 1.198 

a. Dependent Variable: final chlorine     b. EC = electrical conductivity  

 

From Table 4.4, diameter, turbidity, temperature and pressure were all not statistically 

significant with very high p-values greater than 0.05. Although travel time and 

velocity were statistically significant, they were highly correlated with distance as 

shown by correlation matrix in Table 4.3. Distance correlated more strongly with final 

residual chlorine than each of travel time and velocity correlated with final residual 

chlorine. This made distance a better predictor for final residual chlorine than travel 

time and velocity. This also explains the high multicollinearity of distance with 
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variable inflationary factor of 3.38 and marginal statistical insignificance with p-value 

of 0.089.  Model 2 in Table 4.5 excludes diametre, turbidity, temperature and pressure 

which were all not statistically significant. However, distance was included in addition 

to initial chlorine and electrical conductivity which were statistically significant. Table 

4.5 (a) and (b) presents model summary and coefficients respectively of linear 

regression model 2 for three independent and statistically significant variables. 

Table 4. 5:  Linear regression model for statistically significant variables 

(a) Model summary 

 

Model R R Squared Adjusted R 

Squared 

Std. Error of the Estimate 

2 0.793a 0.628 0.619 0.0453 

a. Predictors: (1) Constant, (2) initial chlorine, (3) distance, (4) EC 

                                                    Durbin-Watson = 1.262 

(b) Model coefficients 

 

  Unstandardized 

coefficients 

Standardized 

coefficients 

 
Collinearity 

statistics 

Model 

2 

 

Predictors 

 

B 

Std. 

Error 

 

 

Beta 

 

t 

 

Sig. 

 

 

Tolerance 

 

 

VIF 

     Constant 0.415 0.112       3.692 0.000   

1. initial chlorine 0.548 0.040   0.795 13.761 0.000 0.906 1.104 

2. distance - 0.012 0.002 - 0.365 - 6.250 0.000 0.907 1.105 

3. EC - 0.005 0.002 - 0.175 - 3.182 0.002 0.995 1.005 

a. Dependent Variable: final chlorine          b.  EC = electrical conductivity  

 

The multicollinearity for all independent variables were low ranging from 1.005 – 

1.105 and their p-values were also all below 0.05 for statistical significance at 5% 

level of significance.  

4.3.4.2   Principal component analysis of importance of chlorine decay parameters  

Based on Kaiser criterion of eigenvalues of greater than one for important principal 

components, Figure 4.3 shows that three principal components had eigenvalues above 
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one out of the ten independent variables needed to explain most of the variation in 

residual chlorine decay in drinking water reticulation system. 

 

Figure 4. 3: Scree plot of eigenvalues against principal components 

The associated principal components are as summarized in Table 4.6. 

Table 4. 6: Principal component analysis of residual chlorine decay parameters 

Item   No. of  

Principal 

Components 

(PCs) 

KMO 

Measure 

of 

sampling 

adequacy 

Bartlett’s  

Test of 

sphericity 

PC1 

 

 

    

(% ) 

PC2 

 

 

 

 (% ) 

PC3 

 

 

 

 (% ) 

PC4 

 

 

 

 (% ) 

Explained  

total 

variance 

 

         (% ) 

         

1 2 0.510 0.005 44.06 32.77 NA NA 76.83 

         

2 3 0.510 0.005 44.06 32.77 23.17 NA 100.00 

         

3 4 0.547 0.000 23.15 25.26 14.45 12.28 65.14 
Legend:      1.  PC = Principal component, 2.  KMO = Kaiser-Meyer-Olkin 

Table 4.6 provides three cases for water quality and water physical parameters to 

explain residual chlorine decay in drinking water distribution systems. Case one is a 

two principal component solution that explains 77% of residual chlorine decay. Cases 
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two and three comprise three and four principal component solutions that explains 

100% and 65% respectively of residual chlorine decay. All these cases satisfy the two 

requirements of KMO being above 0.5 and Bartlett’s test of sphericity being less than 

0.05 for statistical significance.  However, a four principal component solution 

explains a much lower 65% total variance compared to the cases of two and three 

principal components that explain 77% and 100% variance respectively. This could 

have been because the eigenvalue of the four principal component solution was 

marginally above one. Therefore, the four principal component solution was not 

considered. Therefore, there is need to evaluate several models and determine which 

achieves the most acceptable results. The equations of the principal components for 

the best case of three principal component solution are as follows: 

𝑃𝐶1 = 0.999 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 … … … … … … … … … … … . … … … … … [4.1] 

𝑃𝐶2 = 0.988 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 … … … … … … … … … . . … … … … … … … … . … … … … … [4.2] 

𝑃𝐶3 = 0.988 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 … … … … … … … … … . . … . . … … … … … . … … … [4.3] 

The other related statistics of extraction communalities, structure and pattern matrices 

for the cases of principal component solutions are found in Appendix Tables A6 to A8. 

4.3.5   Summary of importance of residual chlorine decay parameters  

Table 4.7 summarizes the importance of the different variables that influence residual 

chlorine decay in drinking water reticulation system. Importance metrics for variables 

were calculated using different methods of (1) decision tree, (2) random forest, (3) 

principal component analysis equamax rotated component loading and (4) backward 

elimination in ordinary least square linear regression. 
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Table 4. 7: Importance of variables in residual chlorine decay in water system 

Item Independent 

variable 

Decision 

tree 

 

 

(Score) 

Random 

forest 

 

 

(Score) 

PCA 

 

 

 

(Loading) 

OLS  

Backward 

elimination 

 

p-value / 

Standardized 

Beta coefficient 

1 Initial chlorine 0.437 0.470 

 

0.825 0.000 / 0.816 

      

2 distance 0.019 0.093 0.817 0.089 / - 0.162 

      

3 travel time 0.030 0.041 0.734 0.001 / - 0.283 

      

4 diametre 0.119 0.052 0.705 0.700 / - 0.028 

      

5 turbidity 0.004 0.007 0.639 0.849 / - 0. 001 

      

6 electrical 

conductivity 

0.217 0.226 0.439 0.001 / - 0. 019 

      

7 pH 0.015 0.030 0.312 0.004 / 0.160 

      

8 temperature 0.022 0.013 0.748 0.873 / 0.010 

      

9 pressure 0.006 0.056 0.693 0.991 / - 0.001 

      

10 velocity 0.089 0.015 0.602 0.007 / - 0.155 

                   
                      Legend:  PCA = Principal Component Analysis, OLS = Ordinary Least Square 

 
Table 4.7 demonstrates consistency in ranking of water quality and water system 

parameters as measured by the different ranking systems of decision tree, random 

forest, PCA and OLS linear regression. 

4.3.6   Bivariate analysis of parameters of chlorine decay  

The relationship of each parameter of chlorine decay with chlorine decay in water 

distribution system is discussed in the following sections: 
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4.3.6.1   Hydrogen ion concentration (pH) 

Hydrogen ion concentration (pH) correlated weakly and insignificantly with residual 

chlorine decay as shown in Table 4.3. This finding is consistent with those of Cuesta 

et al. (2014) and Powell et al. (2004) who observed that pH doesn’t influence free 

chlorine decay in water distribution. This finding suggests that the role of pH in 

chlorinating water in water distribution system is limited to influencing dissociation 

(ionization) of free chlorine into hypochlorite ions (OHCl-1) and chlorine ions (Cl-1).  

After free molecular chlorine (Cl) dissociates, the subsequent decay of hypochlorite 

ions (OHCl-1) and chlorine ions (Cl-1) is influenced by other parameters. 

4.3.6.2   Temperature of water 

Temperature is a water quality parameter that correlated weakly and insignificantly 

with residual chlorine decay as shown in Table 4.3 This result contradicts findings of 

Al-Jasser (2006) and Karadirek et al. (2015) that suggested that temperature as a 

measure of thermal energy catalyzes chemical kinetic reactions. The distribution of 

temperature in this study was as narrow as 20.10 ℃ – 27.05 ℃ with mean of 23.89 ℃ 

as shown in Table 4.1. The limitation of temperature to influence chlorine decay could 

have been due to its small variability. The small variability in temperature could have 

limited its impact on residual chlorine decay in this study. From Section 2.3.2.1, 

variability of an independent variable is important in revealing the underlying 

relationship between it and a target (dependent) response variable. 

4.3.6.3 Turbidity 

Turbidity is a water quality parameter correlated weakly and not significantly as 

shown in Table 4.3. Variability of turbidity was low hence one possible reason for not 
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impacting on free chlorine decay in water. However, the composition of the 

constituents of slow and fast reactants in turbid water was not known. Wu and Dorea 

(2020) reported that turbidity was an improper proxy for determining chlorine dosage 

in water. Underground water, as was the case for source of water supply in this study, 

was less contaminated with organic compounds compared to surface water that 

normally is more polluted with organics because of open exposure. Underground 

water tends to have more inorganic pollutants due to dissolution of subsurface 

minerals than surface water. Therefore, the use of other measures for organic 

constituents in water such as DOC (dissolved organic compound) and UV-254 nm are 

better measures for organic reactants in water. 

4.3.6.4   Distance and water age 

Both distance and water travel time (a good proxy for water age) correlated weakly 

with residual chlorine decay as shown in Table 4.3. The strong multi-collinearity 

between distance and water travel time was in order because water travel time is a 

function of (depends directly on) distance travelled.  Distance as a physical water 

distribution network metric is easier to measure than water age that is water quality 

parameter. It is therefore advisable to prefer distance to water age in dimensionality 

(feature) reduction in prediction of residual chlorine. 

4.3.6.5   Pressure and velocity 

Both pressure and velocity correlated weakly and not significantly with residual 

chlorine decay as shown in Table 4.3. Pressure and velocity were the two main 

hydraulic transient variables in water distribution system. The strong multi-

collinearity between pressure and velocity was consistent with the law of energy 



60 
 

conservation in hydrodynamics.  As potential energy (pressure energy) is lost, kinetic 

energy (velocity energy) is gained. According to Monteiro et al. (2017), EPANET 

does not simulate water quality parameters well at low water velocities that associate 

with minimum diffusion. The unexpected average performance of EPANET was also 

attributed to the few sampling points per distribution line in some water zones. 

4.3.6.6   Electrical conductivity 

Electrical conductivity is a water quality parameter that correlated moderately with 

residual chlorine decay as shown in Table 4.3. The distribution of electrical 

conductivity in this study was as narrow as 65.35 μS/cm – 78.50 μS/cm with mean of 

70.01 μS/cm as shown in Table 4.1. These values of electrical conductivity were low 

compared to those observed by Monteiro et al. (2017) who had high electrical 

conductivity of 213 μS/cm for comparable pH of 7.4 and temperature of 16.3℃. 

Similarly, the observed electrical conductivities were also low compared to 110.47 

μS/cm in the study of gravity water distribution systems in Ecuador by Garcia et al. 

(2021) for comparable pH of 7.24. This study was similar to those of Monteiro et al. 

(2017) and Garcia et al. (2021) because all of them were conducted on gravity water 

flow schemes in mountainous regions. The small variability in electrical conductivity 

could have limited its impact on residual chlorine decay in this study. However, 

compared to travel time, diameter and turbidity, electrical conductivity correlated ten 

times better. Electrical conductivity suggests dissolved salts hence electrolytic 

activity. The correlation of electrical conductivity with residual chlorine decay agrees 

with the findings of Nono et al. (2019) of insufficient or small quantities of inorganics 

like iron (Fe2+(aq)), manganese (Mn2+(aq)) below 0.3 mg/l in treated water having 
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minimal effect in residual chlorine decay. This suggests that if electrical conductivity 

values had been high, it would influence residual chlorine decay significantly. 

4.4   Assessment of space-time decay of chlorine in water distribution systems 

This section presents and discusses the results for specific objective no. 2 which was 

“to assess space-time decay of chlorine in water distribution systems”. The space-time 

decay of chlorine was investigated in two ways. The first method was statistical 

modelling and the second was process modelling using EPANET. 

4.4.1   Statistical modelling of space-time decay of chlorine in gravity water 

Correlation matrix Table 4.3 on p.50 showed that both distance and water age (travel 

time) correlated weakly with final chlorine. Distance correlated weakly with Pearson’s 

r = - 0.111 with p-value of 0.216. Travel time correlated even more weakly with 

Pearson’s r = - 0.079 with p-value of 0.379.  However, there was strong multi-

collinearity of Pearson’s r = 0.712 with p-value of 0.000 even at the 0.01 significance 

level between distance and travel time. This suggests that distance would be a stronger 

and statistically significant predictor of final residual chlorine in the absence of water 

age (travel time).  Backward elimination of travel time in ordinary least square 

regression revealed that in Table 4.5, distance had standardized beta = - 0.365 with p-

value of near 0.000. Curve fitting of linear, logarithmic, inverse, quadratic, cubic and 

Weibull models is as shown in Figure 4.4 and Figure 4.5. 
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Figure 4. 4:  Statistical models for space decay of chlorine in gravity water systems 

 

Figure 4. 5: Weibull model for space decay of residual chlorine in gravity water  

The summary statistics for evaluating performance of these six models is in Table 4.8. 
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Table 4. 8: Curve fitting statistics of models for chlorine decay with distance  

 

 

 

Item 

 

 

 

 

Model 

Model summary ANOVA statistics 

 

R 

 

R2 

Adjusted 

R2 

Standard 

error 

 

F-score 

 

p-value 

1 Linear 0.110 0.012 0.004 0.073 1.553 0.216 

        
2 Logarithmic 0.098 0.010 0.002 0.073 1.223 0.271 

        
3 Inverse 0.255 0.065 0.058 0.071 0.777 0.004 

        
4 Quadratic 0.340 0.116 0.102 0.069 0.174 0.000 

        
5 Cubic 0.350 0.123 0.102 0.069 5.785 0.001 

        

6 Weibull  - 0.087 - 0.096 0.077   

 

The associated equations for the models in Table 4.8 are as below.  

1.   Linear model 

𝐹𝑖𝑛𝑎𝑙_𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 = 0.153 − 0.004𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒          [4.4] 

2. Logarithmic model 

𝐹𝑖𝑛𝑎𝑙_𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 = 0.144 − 0.004 ln (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)          [4.5] 

3. Inverse model 

𝐹𝑖𝑛𝑎𝑙_𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 = 0.150 − 0.004𝑥/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒          [4.6] 

4. Quadratic model 

𝐹𝑖𝑛𝑎𝑙_𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 = 0.125 + 0.034𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 0.004𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒^2          [4.7] 

5.  Cubic model 

𝐹𝑖𝑛𝑎𝑙 _𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 = 0.131 + 0.016𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 0.001𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 − 0.001𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ^3         [4.8] 

 

4.4.2   Statistical models of space-time decay of chlorine in water 

All models were consistent with expectation in showing that residual chlorine decays 

with distance. This was shown by the negative coefficient of distance in linear, 

inverse, quadratic and cubic models. For logarithmic model, the low coefficient of 

logarithmic distance reduces residual chlorine as well. The short rising arm of Weibull 

model could have been due to chlorine addition from incoming water from upstream. 

The short buildup of chlorine suppresses its decay causing a short spike in chlorine 
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levels.  The first part of the descending limb of Weibull model showed that chlorine 

decay was fast at start and decreases with time. This clearly shows that chlorine decay 

represented by chlorine decay constant is not constant. This finding seems to agree 

with the study of Tiruneh et al. (2019a) that showed that constant bulk chlorine 

constant underestimates residual chlorine. This was consistent with the single reactant 

process model for chlorine decay kinetics as postulated by researchers like Bowden et 

al. (2019) and Jamwal and Kumar (2016).  Eventually, the later parts of the 

descending limb of Weibull model levels to a more sustained gentle slope. This could 

be due to the slow velocities at downstream points that does not support diffusion and 

dispersion of chlorine for its consumption as observed by Monteiro et al. (2017). 

Overall, the R-squared for all the models were low. This indicates that there was high 

unexplained variance. The high unexplained variance is consistent with the current 

debate of limited knowledge about residual chlorine decay in drinking water 

distribution systems as advanced by Soyupak et al. (2011), Vuta and Dumitran (2019) 

and Zhang et al. (2016). This suggests that a lot of probabilistic variations still exist in 

water quality in water conveyance. Typical stochastic parameters that should be 

modelled in understanding chlorine decay in water distribution could be hydraulic 

transients (pressure and velocity) as advocated by Hyunjun and Sanghyun (2017). 

 
Linear and logarithmic models had very low R2 and high p-values to justify their 

choice. Although inverse, quadratic and cubic models had low R2, they were 

statistically significant even at the 0.01 significance level. Quadratic and cubic models 

practically had the same adjusted R2 = 0.102 and same standard error of 0.069 mg/l. 

However, the cubic model had much better F-score of 5.785 than quadratic model 
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whose F-score was 0.174. In view of cubic model having the highest F-score and 

second lowest p-value, it was therefore preferred to other models. 

4.4.3   Process modelling of space-time decay of chlorine in gravity water 

The laboratory determined chlorine bulk decay, Kb, wall decay, Kw, and total decay, 

KT, constants for three gravity water distribution zones of Lirima water gravity 

scheme. Chlorine decay model was developed by calibrating measured water flows 

that dissolves and transports chlorine within gravity flow distribution system. The 

calibrated models for the three water distribution zones were then validated by 

observed residual chlorine concentrations at water demand junctions/nodes. 

4.4.4   Laboratory-determined chlorine decay constants 

Table 4.9 presents chlorine decay constants for three water distribution zones in 

Lirima gravity water flow scheme.  

Table 4. 9: Chlorine decay constants in Lirima gravity water distribution zones 

(a) Musiye-Nalukwade water distribution zone 

 

 
 

(a) Butiru-Manyeke water distribution zone 

 

 

 

           (c)   Butiru – Vermiculite water distribution zone 

 

Item Pipe link 

 

Kb  

 (/Day) 

KT 

(/Day) 

Kw 

(/Day) 

1 Musiye to Namawanga 2.29 2.34 0.05 

2 Namawanga to Mufutu  12.48 15.60 3.12 

3 Natsekhe to Nalukwade  1.76 17.80 16.04 

Item Pipe link 

 

Kb 

(/Day) 

KT 

(/Day) 

Kw 

(/Day) 

1 Butiru Clinic to Buwasike 13.37 25.65 12.28 

2 Buwanyera to Bufumo 20.26 58.39 38.13 

Item  Pipe link 

 

Kb 

(/Day) 

KT 

(/Day) 

Kw 

(/Day) 

1 Bunangabo Cell to Bumulatte 7.17 7.34 0.16 

2 Bumulatte to Bunabiro 19.21 43.78 24.57 
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Table 4.9 shows that there is high variation in the chlorine decay constants throughout 

the distribution network. This could be due to the differences in water quality in terms 

of the different temperatures, turbidity and electrical conductivities at different 

locations as indicated in Section 4.2. Wall decay, Kw, constants of 0.05 day-1 (Musiye 

Tank to Namawanga) and 0.16 day-1 (Bunangabo to Bumulatte) were comparable to 

the range of 1.2 day-1 (PVC) - 2.16 day-1 (medium HDPE) determined by Hallam et al. 

(2002) for plastic pipes. However, the high wall demand Kw, constants beyond the 1.2 

day-1 (PVC) to 2.16 day-1 range contradicts strongly the studies of Al-Jasser (2006), 

Bensoltane et al. (2018) and Powell et al. (2004) that considers wall decay constants 

of plastic pipes to be insignificantly small in residual chlorine modeling. Some of the 

laboratory determined bulk chlorine decay constants, Kb, such as 1.76 day-1 (Natsekhe 

to Nalukwade), 2.29 day-1 (Musiye to Namawanga) and 7.17 day-1 (Bunangabo to 

Bumulatte) were low and realistic. However, they vary from the average 0.55 day-1 

that Rossman et al. (1994) argued to be the case for treated water. The high values of 

chlorine bulk decay, Kb, decay constants determined by laboratory analysis could have 

been due to different laboratory environmental conditions from those inside water 

distribution system. The differences in temperature, turbidity (as measure of organics) 

and electrical conductivity (as measure of inorganics) as shown in Section 4.2 affect 

chlorine bulk decay constants consistent with the assertion of Karadirek et al. (2015). 

Therefore, several bulk decay constants occur in water distribution network for the 

varying water quality parameters of temperature, electrical conductivity, organic and 

inorganic compounds that also vary. The use of single chlorine decay constant to 

represent the entire water distribution network should be discouraged as it potentially 

gives wrong answers in process modelling of residual chlorine decay. Variable 
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reaction constants proposed by Tiruneh et al. (2019b) would thus be more realistic 

though not simple for practical residual chlorine modelling. 

4.4.5   Chlorine decay constants based on residence times in water pipes 

Total first-order (n=1) chlorine decay constants derived from the residence time 

(water age) in distribution pipes are as shown in Table 4.10 for three gravity water 

zones 

Table 4. 10: Calibration of total chlorine decay constant in water distribution  

(a) Musiye-Nalukwade water distribution zone 

 

(a) Butiru-Manyeke water distribution zone 

 
(c)   Butiru-Vermiculite water distribution zone 

 

It

e

m 

Pipe link 

(from junction i to next junction 

(i+1)) 

Velocity 

(m/s) 

Length 

(m) 

Free chlorine residual 

concentration (mg/l) 

Total 

chlorine 

decay 

constant. 

KT (/Day) 

At start of 

pipe link 

At end of  

pipe link 

1 

Musiye Tank to Namawanga 0.0327 

2,722.3

8 0.21 0.20 - 0.000001 

2 Namawanga to Mufutu trading center  0.0327 714.04 0.20 0.17 - 0.000007 

3 

Mufutu Trading center to Maala 0.0610 

1,015.4

6 0.17 0.16 - 0.000004 

4 Maala to Natsekhe wash-out 0.0243 783.82 0.16 0.16   0.000000 

5 Natsekhe wash-out to Nalukwade 1 0.0390 490.37 0.16 0.14 - 0.000011 

It

e

m 

Pipe link 

(from junction i to next junction 

(i+1)) 

Velocity 

(m/s) 

Length 

(m) 

Free chlorine residual 

concentration (mg/l) 

Total 

chlorine 

decay 

constant.

KT (/Day) 

At start of 

pipe link 

At end of 

pipe link 

1 Butiru to Buwasike  0.0749 1,281.44 0.40 0.33 -0.000011 

2 Buwasike to Buwanyera 0.0860 2,814.22 0.33 0.27 -0.000006 

3 Buwanyera to Bufumo 0.1148 1,503.33 0.27 0.08 -0.000093 

Ite

m 

Pipe link 

(from junction i to next junction 

(i+1)) 

Velocity 

(m/s) 

Length 

(m) 

Free chlorine residual 

concentration (mg/l) 

Total 

chlorine 

decay 

constant.K

T (/Day)) 

At start of 

pipe link 

At end of 

pipe link 

1 Butiru to Bunangabo  0.0347 1,592.86 0.36 0.08 -0.000033 

2 Bunangabo to Bumulatte 0.0647 1,000.00 0.08 0.07 -0.000009 

3 Bumulatte to Bunabiro 0.2970 1,000.00 0.07 0.03 -0.000252 
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The total single-value first-order chlorine decay constants, KT, determined from 

residence time using the methods of Hallam et al. (2002), and Madzivhandila and 

Chirwa (2017) in water distribution pipes were small. These results were consistent 

with the studies of Al-Jasser (2006), Bensoltane et al. (2018), Monteiro et al. (2017) 

and Powell et al. (2004) that reported very low hence insignificant chlorine wall 

demands for non-metallic pipes like plastic pipes in particular. The variation in single 

decay coefficient in the different pipe links accounts for the variations in other factors 

from point to point and this is consistent with earlier observation by Tiruneh et al. 

(2019a).  The low values of the calibrated wall demand coefficients are also consistent 

with low flow velocities as was the case in this study. With the very low flow 

velocities in this study as shown in Table 4.10 (a), (b) and (c), the flow regime was 

largely laminar in compliance with Rossman et al. (1994), Karikari and Ampofo 

(2013), Jamwal and Kumar (2016), and Vuta and Dumitran (2019). Under such 

laminar flow, chlorine residual decay is mass-transport limited (Hallam et al., 2002) in 

which chlorine bulk decay dominates. This means that wall decay, Kw, constants are 

almost zero which is consistent with the values determined from residence time in this 

study in Table 4.10 (a), (b) and (c). Use of the low values of wall decay, Kw, constants 

determined from residence time of water in distribution system would therefore be 

appropriate for modelling residual chlorine decay in plastic pipes. Both water 

transmission and distribution pipes in Lirima gravity water flow scheme were plastic.  

4.4.6   Calibration and validation of space-time chlorine decay in EPANET 

This section presents results for models calibrated by measured flows and cross-

validated by chlorine concentrations. The purpose of this was to enable a calibrated 

water flow model to carry dissolved chlorine from one part to another in water 
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distribution network. The calibrated water flow models were then cross-validated by 

observed residual chlorine concentrations at the same water demand junctions. Model 

cross-validation was done by using measured residual chlorine concentrations on 

different days and run times from those used in water demand flow calibration. Table 

4.11 shows EPANET hydraulic model calibration and validation for the three water 

distribution zones of Lirima gravity flow scheme. 

Table 4. 11:  EPANET hydraulic model calibration and validation for gravity water  

(a)   Musiye-Nalukwade water distribution zone 
                               Demand model                              Chlorine model  

  

 

Calibration data  

calibration Statistics  

Test data  

cross validation statistics 

Mean error 

(m3/d) 

R-

Squared 

Mean error 

(mg/l) 

R-

Squared 

 
Day1_Run3 

(Evening) 

 

Tuesday 9th Feb 2021 

 
1.749 

 

 
0.997 

 

 
Day8_Run1 

(Morning) 

 

Wed 24th Feb 2021 

 
0.168 

 

 
0.722 

 

 
(b)   Butiru-Manyeke water distribution zone 

                                  Demand model                                Chlorine model  

 

Calibration data 

        calibration statistics  

Test data  

Cross Validation Statistics 

Mean error 

(m3/d) 

R-

Squared 

Mean error 

(mg/l) 

R-

Squared 

 
Day5_Run1 

(Afternoon) 

 

Tuesday 23rd Feb 

2021 

 
0.000 

 

 

 
1.000 

 

 
Day2_Run1 

(Afternoon) 

 

Wed 10th Feb 2021 

 
0.002 

 
0.997 

 

(c) Butiru-Vermiculite water distribution zone 
                        Demand model                              Chlorine model  

 

Calibration data  

Calibration statistics  

Test Data  

Cross validation statistics 

Mean error 

(m3/d) 

R-

Squared 

Mean error 

(mg/l) 

R-

Squared 

 

Day3_Run2 

(Afternoon) 

 

Thursday 11th Feb 
2021 

 

0.653 

 

 

 

0.999 

 

 

Day7_Run1 

(Morning) 

 

Tue 23rd Feb 2021 

 

0.773 

 

0.937 

Table 4.11 shows varied performance of EPANET model in space-time decay of 

residual chlorine with R-squared ranging from 72% with model error estimate of 
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0.168 mg/l to 98% with model error estimate of 0.002 mg/l. The result shows that the 

performance of EPANET varies with water distribution zones within the same gravity 

flow scheme. This may be due to the variation in the distance from zonal water 

reservoir to the furthest water consumption time. The deposits of reactants within the 

water distribution pipes may also vary due to differences in network infrastructure 

maintenance schedules These and other unknown factors can influence space-time 

decay of residual chlorine even within the same water distribution zone.   

4.4.7   Algorithm result for chlorine residuals in gravity flow distribution 

Using the algorithm in section 3.6.2.2, Table 4.12 gives chlorine residuals for 

secondary chlorination based on this algorithm. 
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Table 4. 12: Algorithm results for secondary chlorination in gravity water flow  

(a)  Musiye-Nalukwade water zone 5.34 Km long 

Item Initial 

chlorine  

 
(mg/l) 

Depth 

of water 

in tank  
    (m) 

Pipe 

DN 

 
(mm) 

Velocity 

in pipe  

 
(m/s) 

Residual 

chlorine at 

pipe end  
(mg/l) 

Limit of 

distance  

 
(Km) 

1 0.32 0.50 100 3.13 0.3148 5.34 
0.75 100 3.84 0.3158 5.34 

       

2 0.36 0.50 100 3.13 0.3542 5.34 
0.75 100 3.84 0.3552 5.34 

       

3 0.44 0.50 100 3.13 0.4329 5.34 

0.75 100 3.84 0.4342 5.34 

  
(a) Butiru-Vermiculite water zone 4.9 Km long 

Item  Initial 
chlorine  

 

(mg/l) 

Depth 
of water 

in tank  

(m) 

Pipe 
DN 

 

(mm) 

Velocity 
in pipe  

 

(m/s) 

Residual 
chlorine at 

pipe end  

(mg/l) 

Limit of 
distance  

 

(Km) 

1 0.37 
0.37 

0.50 
0.50 

75 3.13 0.3668 2.90 
2.90 63 4.44 0.3629 

       

2 0.37 0.25 75 2.21 0.3600 2.90 
       

3 0.41 0.50 75 3.13 0.3629 2.90 

63 4.44 0.3620 3.00 
0.25 75 2.21 0.3989 3.00 

       
4 0.49 0.50 75 3.13 0.4806 2.90 

0.25 75 2.12 0.4767 2.90 

 

(a) Butiru-Manyeke water zone 7.56 Km long 

Item Initial 

chlorine  

 

(mg/l) 

Depth 

of water 

in tank  

(m) 

Pipe 

DN 

 

(mm) 

Velocity 

in pipe  

 

(m/s) 

Residual 

chlorine at 

pipe end  

(mg/l) 

Limit of 

distance  

 

(Km) 
1 0.31 0.50 75 3.13 0.3067 5.34 

0.75 75 3.84 0.3158 1.96 

       
2 0.35 0.50 75 3.13 0.3542 5.34 

0.75 75 3.84 0.3552 5.34 

       
3 0.43 0.50 100 3.13 0.4329 5.34 

0.75 100 3.84 0.4342 5.34 



72 
 

4.4.8   Discussion of algorithm results for secondary chlorination in water zones  

The aim of the algorithm for secondary chlorination was twofold as follows: (1) to 

ensure that there is adequate and safe residual chlorine in all water distribution zones 

that meets the range of 0.2 – 5.0 mg/l as per standards of WHO (2014). The second 

objective of the algorithm for secondary chlorination was to ensure that water flow 

velocities are within the range of   0.3 – 3.5 m/s   as specified in Design Guidelines for 

Water Supply Infrastructure manual by the Directorate of Water and Development 

(Uganda) (2013). Simulation of this algorithm shows that in order to operate water 

reservoir tank to ensure flow velocity equal to the regulatory maximum limit of 3.5 

m/s requires water depth of 0.625 m. Both intermediate reservoir and break-pressure 

tanks in Lirima have maximum (water over-flow) design height of 3.5 m.  This means 

that the tanks will be operated at only 17.8% capacity. During data collection, the 

observed depth of water in the tanks of the gravity scheme was between 0.30 m – 0.50 

m which falls within the 17% capacity operation for below maximum velocity flows. 

Future designs of especially intermediate reservoirs that can act as secondary 

chlorination points should ensure that the plan area of tanks should be increased for 

maximum design height of 0.625 m for a given design volume of such tanks. 

The decay of residual chlorine from an upstream point to a downstream point based on 

flow velocity was low. This could have been because of the low velocities that ranged 

from 0.001 – 0.10 m/s averaging 0.04 m/s as shown in Table 4.1 of descriptive 

statistics for water quality and water system parameters. Low flow velocities are 

largely laminar and therefore minimize turbulence (Jamwal and Kumar, 2016; Kim et 

al., 2014; Vuta and Dumitran, 2019) that is necessary for mass-transport (Stoinov and 

Aisopou, 2014). The dominant process reaction model most likely was phase two with 
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slow-reactants. This assumption was based on more than 30 minutes lapse of time 

wherein fast reactants are consumed at treatment plant during initial chlorine dosage. 

The reaction therefore conforms to Wu and Dorea (2020) for slow decay. Diffusion 

and dispersion of dissolved chlorine was low due to the low velocities consistent with 

what Monteiro et al. (2017) asserted. Smaller pipe sizes than 75 mm transmit water at 

excessive velocities higher than the limiting velocity of 3.5 m/s as specified by 

Directorate of Water and Development (Uganda) (2013). This implies that this 

algorithm is applicable to pipe sizes of 75 mm and larger. 

4.5   Comparison of model performance in predicting residual chlorine  

This section presents and discusses the results for specific objective no. 3 which was 

“to compare performance of various models”. Physical (process) model used was 

EPANET applied in modelling residual chlorine decay in three water distribution 

zones. Statistical (data-driven) models developed for residual chlorine decay analysis 

include multiple linear regression model, lasso regression model, ridge regression 

model, decision tree regression model, random forest and artificial neural network. 

The statistically significant water quality parameters with low multi-collinearity 

identified in Section 4.3.4 were used in these statistical models.  

4.5.1   EPANET model 

Table 4.13 presents the performance of EPANET in modelling residual chlorine decay 

in three separate zones and for all the combined zones. 

Table 4. 13: Performance of EPANET in modeling chlorine decay in water distribution 

Item Water Zone Sample 

Points 

Performance Metrics 

   RMSE 
    (mg/l) 

    MAE  
    (mg/l) 

1 Musiye 91    0.4250 0.63 
2 Vermiculite 45    0.8718 1.02 
3 Manyeke 10    0.0000 0.00 

4 Combined    149    0.5829 1.02 
Legend:  RMSE = Root Mean Square Error, MAE = Maximum Absolute Error 
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Table 4.13 shows the analysis results for performance of EPANET in predicting 

residual chlorine decay in water distribution network. The size of datasets used clearly 

influences the analysis results. Small datasets tend to overfit while larger datasets tend 

to model chlorine decay better. 

4.5.2   Multi-linear regression model   

The equation for final residual chlorine in water distribution network based on 

statistically independent and statistically significant water quality and water 

distribution system parameters was: 

 𝐹𝑖𝑛𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒  =  0.415 +  0.548 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒  –  0.012 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 –  0.005 𝐸𝐶. …… . [4.9] 

where final chlorine and initial chlorine are measured in mg/l, distance is measured in 

Km and EC (electrical conductivity) is measured in µS. 

4.5.2.1   Discussion of multi- linear regression model 

From Equation 4.9, calculation of initial chlorine required to ensure final residual 

chlorine of 0.2 mg/l can be inferred and obtained from Equation 4.10 as follows: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒 =   ((0.2 + 0.012𝐷 + 0.005𝐸𝐶 − 0.415))/0.548 … … … … . [4.10] 

where: 

D = Distance of water distribution pipe from chlorine dosing point (upstream) to 

water consumption draw-off point (downstream) 

 
This equation explains 63% of residual chlorine decay in gravity water distribution 

with error of 0.045 mg/l. In accounting for over 60% of residual chlorine in gravity 

water distribution, the final estimated residual chlorine using this model is expected to 

be within 0.135 mg/l (three standard deviations) from the true residual chlorine at 95% 

confidence level. This error is reasonably small hence tolerable. This model structure 
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is simple as it uses only three parameters of (1) initial chlorine dosage at water 

treatment plant, (2) distance from water treatment plant to any water consumption 

point downstream and (3) electrical conductivity that are easy and to determine and 

are conveniently controllable. The standardized beta coefficients of the OLS 

regression model show the importance of initial chlorine (0.795), electrical 

conductivity (0.365) and distance (0.175) as predictors of final residual chlorine in 

that decreasing order.  

4.5.3   Principal component analysis regression model 

The equations for the three principal components developed from the rotated 

component matrix for three principal component solution based on electrical 

conductivity, distance (length) and initial chlorine (chlorine dose) as the key 

predictors were as follows: 

 

𝑃𝐶1 = 0.999 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 … … … … … … … … … … … . … … … … … [4.11] 

𝑃𝐶2 = 0.988 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 … … … … … … … … … . . … … … … … … … … . … … … … … [4.12] 

      𝑃𝐶3 = 0.988 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒 … … … … … … … … … . . . … . . … … … … … . … … [4.13] 

The linear regression model with the three principal components as predictors 

developed in Equation 4.11 to Equation 4.14 is presented in Table 4.13. 
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Table 4. 14:  Details of principal component analysis-based regression model 

(a)  Model summary 

Model R R squared Adjusted R squared Std. error of estimate 

1 0.788a 0.620 0.611 0.04564 

a. Predictors: (Constant), chlorine dose, length, electrical conductivity 

 
(b)  Coefficientsa 

Model 

Unstandardized 

coefficients 

Standardized 

coefficients 

t Sig. 

Collinearity 

statistics 

B 

Std. 

error Beta Tolerance VIF 

1 (Constant) 0.144 0.004  35.597 0.000   

electrical_ 

conductivity 

- 0.014 0.004 - 0.189 -3.423 0.001 1.000 1.000 

length - 0.017 0.004 - 0.230 - 4.155 0.000 1.000 1.000 

chlorine_dose 0.053 0.004 0.729 13.171 0.000 1.000 1.000 

a. Dependent Variable: residual chlorine 

Legend:  B = Unstandardized bete coefficient  ,  t  =  test statistic = (B/std.error) , VIF = Variable Inflationary Factor 

The resulting linear regression model from the three principal components in Table 

4.14 as predictors for final residual chlorine in water reticulation is as shown in 

Equation 4.14. 

𝑅𝑒𝑠𝑑𝑢𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒 = 0.144 − 0.014  𝐸𝐶 − 0.017 𝑙𝑒𝑛𝑔𝑡ℎ + 0.053 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑑𝑜𝑠𝑒 … … . [4.14]  

4.5.3.1   Comparison of OLS linear regression and PCA regression models 

The performance of linear and PCA regression models in predicting residual chlorine 

decay in gravity water reticulation systems is compared in Table 4.15. The 

performance comparison is based on initial chlorine, distance and electrical 

conductivity that were found to be the three parameters contributing to over 90% of 

residual chlorine decay. 
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Table 4. 15: Performance of linear and principal component regression models 

 

 

 

 

Item 

 

 

Model  

characteristic 

statistics 

Regression models 

 

 

Deviation 

from 

each other  

 

 

Linear 

regression 

model 

Principal 

component 

regression 

model 

1.0 Model summary    

1.1 Pearson’s   r 0.793 0.788 0.005 

1.2 R-squared 0.623 0.620 0.003 

1.3 Adjusted R-squared 0.619 0.611 0.008 

1.4 Standard error of 

model estimate 

 

0.0453 

 

0.0456 

 

0.0003 

2.0 ANOVA statistics    

2.1 F-score 69.25 67.48 1.77 

2.2 Model significance (p-

value) 

 

0.000 

 

0.000 

 

0.000 

3.0 

 

Collinearity statistics 

(VIF) for key 

predictors 

   

3.1 Electrical conductivity  

1.005 

 

1.000 

 

0.005 

3.2 Distance (length) 1.103 1.000 0.103 

3.3 Initial chlorine 

(Chlorine dose) 

 

1.004 

 

1.000 

 

0.004 

 

4.5.4   Lasso regression model 

Lasso regression model performed as shown in Table 4.16. 

Table 4. 16: Performance metrics of lasso regression model for residual chlorine 

Item Dataset Performance metrics 

RMSE MAE R2 

1 Training 0.07 0.05 0.00 
2 Test 0.08 0.06 -0.03 

  
 Legend:  RMSE = Root Mean Square Error, MAE = Maximum Absolute Error 

Table 4.16 shows that lasso regression marginally over-fitted data. This is because the 

train data statistics of RMSE and MAE were both slightly better than the 

corresponding statistics for test data. Since the differences are marginal, lasso 

regression can be compared with other statistical models. 
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4.5.5   Ridge regression model 

Ridge regression model performed as shown in Table 4.17. 

Table 4. 17: Performance metrics of ridge regression model for residual chlorine 

Item Dataset Performance metrics 

RMSE MAE R2 
1 Training 0.05 0.04 0.42 
2 Test 0.06 0.05 0.39 

 

Legend:  RMSE = Root Mean Square Error, MAE = Maximum Absolute Error 

Table 4.17 shows that ridge regression marginally over-fitted data. This is because the 

train data statistics of RMSE, MAE and R-squared were all slightly better than the 

corresponding statistics for test data. Since the differences are marginal, ridge 

regression can be compared with other statistical models. 

4.5.6   Lasso and ridge regression models 

Lasso regression model generalizes well as its training and test performance metrics 

compare closely. However, it has a low R2. This can be attributed due to elimination 

of variables that correlate weakly with final residual chlorine. 

Ridge regression model also generalizes well as its training and test performance 

metrics compare closely. Its test R2 is low because of inclusion of variables that 

correlate weakly with final residual chlorine. 

4.5.7   Decision tree model 

The model in Table 4.18 presents the training and test performance and schematic 

decision tree regressor respectively of decision tree as analyzed by Python. 
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Table 4. 18: Performance metrics of decision tree model for residual chlorine 

Item Dataset Performance metrics 

RMSE MAE R2 
1 Training 0.03 0.01 0.41 
2 Test 0.03 0.01 0.41 

Legend:  RMSE = Root Mean Square Error, MAE = Maximum Absolute Error 

4.5.8   Random forest model 

The model in Table 4.19 presents the training and test performance of random forest 

as analyzed by Python. 

Table 4. 19: Performance metrics of random forest model for residual chlorine 

Item Dataset Performance metrics 

RMSE MAE R2 

1 Training 0.02 0.02  
2 Test 0.05 0.04 0.55 

 

Legend:  RMSE = Root Mean Square Error, MAE = Maximum Absolute Error 

Decision tree that normally tends to overfit in most cases compared to other regression 

models had comparable performance to random forest as shown in Table 4.19.  This in 

part could have been due to pruning the decision tree to a maximum depth of four to 

minimize its inherent tendency to overfit. Since the random forest is an ensemble of 

decision trees as base models to minimize individual decision tree overfitting, it 

follows that the random forest model performed expectedly at least as well as decision 

tree model. This conforms to domain knowledge on decision trees and random forests. 

4.5.9   Artificial neural network model 

Performance of artificial neural network for residual chlorine in gravity water 

distribution is summarized in Figures 4.6. The outputs and targets in Figure 4.6 are the 

predicted and actual residual chlorine concentrations respectively. The R-score values 

were 0.93, 0.68 and 0.94 for training, validation and test datasets respectively. 
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Legend:     Y = Output        T = Target        All= Whole (unsplit) dataset  

Figure 4. 6: Training and validation performance of artificial neural network model 

for residual chlorine  

The performance accuracy plots for the generated artificial neural network for residual 

chlorine were as shown in Figure 4.7. 

(a)                                                                                                 (b) 

                        

(b)                                                                                               (d) 

                    

(c) 
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(a) Python-generated  

      

(b)  MATLAB-generated  

Figure 4. 7: Training and validation accuracies in artificial neural network  

 

Figure 4.7 (a) shows better accuracy for validation data than that for training data. 

Similarly, Figure 4.7 (a) shows better accuracy in terms of lower RMSE at lower 

epochs. Both Figure 4.7 (a) and (b) emphasize better results at lower epochs. This 
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means that there should be care not to over-train in artificial neural network 

modelling. 

Figure 4.8 shows the architecture / structure of the artificial neural network for 

residual chlorine decay in gravity water distribution. 

 

Figure 4. 8: Structure of artificial neural network model for residual chlorine  

Ten predictor variables (inputs) were fed in the artificial neural network (ANN) that 

had five hidden layers. The single output was the final residual chlorine as target 

variable. 

4.6   Performance of chlorine decay models in predicting chlorine decay in water  

 

Table 4.20 summarizes the performance of process and statistical models based on 

performance metrics from test (validation) data. The statistics for multi-linear 

regression model are those contained in Table 4.5 (Linear regression model for 

statistically significant parameters of chlorine decay in water distribution network).   
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Table 4. 20: Performance of chlorine decay models in water distribution network 

Item Model Goodness of fit 

statistics 

Performance 

accuracy 

(mg/l) 

 

 

 

Adjusted 

R2 

Std/ 

error 

(mg/l) 

 

RMSE 

(mg/l) 

 

        MAE 

       (mg/l) 

 

                

                Rank 

1 EPANET 0.235  0.43 0.63                 

8 

       

2 OLS Linear 

regression 

0.619 0.0453                           

2 

       

3 Lasso regression   0.06        

7 

       

4 Ridge regression   0.05   6 

       

5 PCA regression 0.611 0.0456    3 

       

6 Decision tree 0.409  0.05 0.04  5 

       

7 Random forest 0.545  0.05 0.04  4 

       

8 Artificial neural 

network 

0.938  0.04 0.05  1 

Legend:  RMSE = Root Mean Square Error, MAE = Maximum Absolute Error 

The eight models in Table 4.20 were ranked using performance accuracy statistics as 

mentioned in methodology section 3.6.2 (data analysis method for specific objective 

No. 3). Both multi-linear regression and random forest models were consistent in 

emphasizing the importance of water quality (initial chlorine and electrical 

conductivity) and physical (distance) parameters in residual chlorine decay. The 

standardized beta coefficients of multi-linear regression in Section 4.5.2 and 

importance ranks of random forest in Section 4.5.9 are summarized in Table 4.21 for 

ease of appreciation. 
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Table 4. 21: Influence of parameters in residual chlorine decay in gravity water  

Chlorine 
decay 

parameter 

category 

Chlorine decay 
parameter 

Linear 
regression: 

standardized 

beta 

coefficients 

Random 
forest: 

feature 

importance 

rank 

Order of 
decreasing 

importance 

Water 

Quality 

Initial chlorine 0.795  

(59.55%) 

0.4696 

(62.79%) 

1 

Electrical conductivity 0.365  

(27.34%) 

0.2261 

(30.23%) 

2 

Water 

System 

Distance 0.175 

(13.11%) 

0.0522 

(6.98%) 

3 

Table 4.21 further shows that water quality parameters contribute between   87% - 

93% of residual chlorine decay requirements compared to 7% - 13% of water system 

contribution. This calls for more control in setting the right chlorine dosage during 

water treatment.  Once water is treated, electrical conductivity in water distribution 

network (pipes and tanks) accounts for residual chlorine during water transport.  In 

design of new water distribution systems and improvement of existing ones, the 

distance of water distribution network from water treatment plant to water delivery 

points should be well optimized to minimize residual chlorine loss. 

4.7 Identification of model(s) for predicting residual chlorine decay in water  

This section presents and discusses the results for specific objective no. 4 which was 

“to identify the appropriate model(s) for predicting residual chlorine decay”. The 

factors that were considered in selection of model include (1) generalizability 

identified by minimum overfitting on test (validation) data, (2) dimensionality control 

in terms of balance between model density versus model sparsity and (3) model 

interpretability. Each of these factors are required in a good model. Based on 
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performance metrics in Table 4.20, the order of model performance from best to worst 

is artificial neural network, multi-linear regression model, principal component 

regression model, random forest, decision tree, ridge regression model, lasso 

regression model and EPANET.  

4.7.1   Model factors and model ranks 

Table 4.20 shows that artificial neural network (ANN) performed best because of 

having the highest R-score of 0.938, least RMSE of 0.04 mg/l and second lowest 

MAE of 0.05 mg/l (just above the lowest MAE of 0.04 mg/l).  Besides, Figure.4.6 also 

shows that the test R-score of ANN of 0.9377 as in Figure.4.6(c) was more than its 

training R-score of 0.9295 as in Figure.4.6(a). This suggest that the ANN model did 

not overfit. However, ANNs have the weakness of difficulty in interpretation. The 

contribution of each parameter in predicting a target variable like final chlorine is 

important. This is not the case with ANN because it is a “blackbox”. 

Regression models like multi-linear ordinary least square (OLS), LASSO (L1 

regularization model) and ridge (L2 regularization model) regression models are easy 

to interpret because their regressor (predictor parameter) coefficients shows how much 

the target variable (in this case final residual chlorine) changes with unit change in 

each predictor variable. However, model parsimony requires restriction in the number 

of predictors to avoid the model from underfitting (when too few predictors are used) 

as opposed to model from becoming complex (when too many predictors are used). In 
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this regard OLS, and ridge regression models are better than lasso regression model in 

terms of avoiding too few predictors. The performance of the tree-based models 

(decision tree and random forest) is also encumbered by interpretation weakness for 

lack of knowledge about how much each predictor influences chlorine decay.  

Therefore, regression models tend to appeal more for choice because of ease of 

interpretation. The influence of each parameter as shown by the beta coefficients in 

regression models is important in controlling and managing each predictor with 

respect to the desired final residual chlorine at water consumption points. This leaves 

us with OLS, lasso, ridge and PCA regression models.  

Lasso regression model eliminates insignificant models. This is good as long as the 

remaining number of predictors are not too few to underfit final model. On the other 

hand, ridge regression model allows the insignificant model to remain with their 

insignificant contributions. This may abuse the consideration for model parsimony 

that is about avoiding overfitting. PCA regression model also suffers from 

interpretation because its predictors are linear combinations of individual predictors. 

Table 4.15 (comparison of performance of OLS and PCA regression models) showed 

that OLS and PCA regression models performed almost the same. The R-squared 

values were 61.9% (OLS), 61.1% (PCA); standard error of estimates were 0.0453 

mg/l (OLS) and0.0456 mg/l (PCA) and ANOVA F-scores were 69.25 (OLS) and 
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67.48 (PCA). In view of requirement for interpretability in modelling, OLS emerges a 

better model than PCA. Therefore, in view of the above considerations and arguments, 

the OLS regression model is a better choice. However, the other models can be used 

as a background check on the performance of the OLS regression model itself. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1   Introduction 

The main purpose of this research was to compare space-time performance of chlorine 

decay models in order to identify user-friendly decay model for gravity water 

distribution systems. This goal had four specific objectives of (1) characterization of 

water distribution parameters of chlorine decay, (2) assessment of space-time decay of 

chlorine in gravity flow distribution systems, (3) comparison of performance of 

various models that predict residual chlorine concentration and (4) identification of 

appropriate model(s) for residual chlorine decay in gravity water systems.  

The associated research questions for research specific objectives were (1) which 

water quality and water system parameters influence space-time decay of chlorine in 

gravity water systems? (2)  how does chlorine in gravity distribution systems decay in 

space and time? (3) how does the various models that predict residual chlorine 

concentration in gravity distribution systems compare in performance? and (4) which 

model(s) is/are appropriate for managing residual chlorine decay in gravity water 

system? 

The research was done on Lirima Gravity Flow Scheme found in Mount Elgon in 

eastern Uganda. This water scheme is owned and operated by National Water and 

Sewerage Corporation. 
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5.2   Summary of findings 

Chlorine dosage was being done centrally at the treatment plant. The chlorine dosage 

ranged from 0.70 to 1.0 mg/l with mean dosage of 0.76 mg/l as shown in appendix 

Table A.1. This dosage was consistent with the WHO (2014) recommended range of 

0.2 -5.0 mg/l. However, residual chlorine at most consumer points that averaged 0.14 

mg/l was below the lower limit of 0.2 mg/l. The turbidity of the water was low with 

mean of 0.96 NTU. The insignificance of turbidity to explain chlorine decay was 

consistent with the findings of Wu and Dorea (2020) who discouraged turbidity for 

determining chlorine dosage in water. The electrical conductivity of treated water at 

Lirima treatment plant was high ranging from 95.4 µS -141.0 µS with mean of 122.4 

µS as shown in Table A.1.  This compares sharply with the low electrical conductivity 

in water transmission and distribution lines ranging from 65.4 µS – 78.50 µS with 

mean of 70.01 µS as shown in Table 4.1. Initial chlorine concentration, electrical 

conductivity and distance correlated significantly with chlorine decay. However, pipe 

diametre, turbidity, pH, temperature and pressure correlated weakly and 

insignificantly with residual chlorine. 

Based on generalizability, dimensionality control and interpretability factors, linear 

regression with R-squared of 63% and model error of 0.045 mg/l was the best model 

for residual chlorine decay. The performance of models in Table 4.20 in predicting 

decay of residual chlorine in gravity water systems ranked from best to worst is 

artificial neural network, multi-linear regression model, principal component 

regression model, random forest, decision tree, ridge regression model, lasso 

regression model and EPANET. 
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5.3   Conclusions   

The following conclusions based on results for research specific objectives in Section 

1.5 and research questions in Section 1.6 are made. 

5.3.1   Conclusion on characterization of parameters of chlorine decay in water 

Initial chlorine dose and electrical conductivity together on average influence 90% of 

chlorine decay in gravity drinking water distribution system. Distance from water 

treatment to water consumption point on average influence 10%. The other parameters 

like pH, turbidity and temperature had insignificant effect on residual chlorine decay 

in water distribution network. These results support the conclusion that water quality 

parameters influence residual chlorine decay much more than physical parameters. 

5.3.2   Conclusion on space-time decay of chlorine in water distribution systems 

Distance had p-value of less than 0.01 even at the 0.01 significance level resulting in 

regression model with adjusted R-squared of 62% with standard estimate error of 

0.045 mg/l. These results support the conclusion that distance is a much better space-

time chlorine decay parameter.  

5.3.3   Conclusion on comparison of performance of models for chlorine decay 

The better performance of statistical models supports the conclusion that they should 

be preferred to use of EPANET model. 

5.3.4   Conclusion on identification of models for predicting residual chlorine decay 

The better performance of multi linear regression model with known effect of each 

water quality and physical parameter that is interpretable supports the conclusion that 

they should be used in predicting of residual chlorine decay in water distribution 

system. 
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5.4   Limitations and future action 

The following limitations should be noted: 

5.4.1   Poor performance of EPANET 

EPANET model did not predict residual chlorine decay well.  This is attributed to the 

low velocities that averaged 0.04 m/s that could not allow diffusion of chlorine in 

water. National Water and Sewerage Corporation advised that the water sampling 

points should not be close if there was to be observable differences in residual 

chlorine concentrations between any two adjacent points. This advice was based on 

the low chlorine dosage at the treatment plant that ranged from 0.70 mg/l-1.0 mg/l that 

averaged 0.76 mg/l as shown in Table A.1. Consequently, the interval of water 

sampling points was large ranging from 0.8 Km-1.2 Km. This strategy ensured that 

there was noticeable decay in residual chlorine from one upstream point to the next 

downstream point to introduce variability needed in modelling. The unavoidable 

effect of this strategy was the few sampling points per distribution line in some water 

zones ranging from four to six.  Each hydraulic analysis for a particular run on a given 

gravity water distribution zone depends on the number of sampling points. This 

requirement of hydraulic connectivity is one of the key basis for EPANET water 

quality modelling. Although several runs were performed on different days and at 

different times within a day on given gravity water distribution zone, the challenge of 

reduced variability in residual chlorine due to few water sampling points on a given 

water distribution line remained.  
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5.4.2   Use of one process model against several statistical models 

EPANET was the only process-based model that was used in comparison with seven 

statistical models. The decision to use EPANET as the only process model was 

influenced by its popularity and dominant in water industry and practice and 

availability as well compared to other water modelling tools like WaterCAD, Mike, 

Pipe, Civil Designer. etc. It is not proven that any of these other process models could 

have performed worse than EPANET against any of the statistical models used in this 

study. Therefore, there is need for a separate and similar study to find out how these 

models would perform compared to statistical models 

5.4.3   Non-variable decay constant in EPANET 

The assertion by Soyupak et al. (2011) that chlorine decay assumes a deterministic 

reaction kinetic model may not be true at all times. This is because the distribution of 

parameters that influenced chlorine decay like chlorine decay coefficient, electrical 

conductivity etc. were non-uniform in this study. This could have affected the 

performance of EPANET that was modelled on the basis of single-reactant and 

constant decay constants as was assumed in Section 1.7.3. Although effort was made 

by using different decay constants in individual pipe segments, this may not have been 

adequate to reflect the true state of events even in individual pipe segments because 

some pipe segments were long.  

5.4.4   Narrow variability in some water quality parameters 

Temperature and turbidity were envisaged as key water quality parameters that 

influence residual chlorine decay in water distribution networks. However univariate 

analysis of parameters of residual chlorine decay in water reticulation networks found 
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temperature and turbidity to have small variabilities as shown in Table 4.1 (descriptive 

statistics of chlorine decay parameters). The small variabilities could have affected the 

role of these parameters in statistical modelling for chlorine decay. 

5.4.5   Cross-sectional study 

This was cross-sectional study as it was conducted during the dry season. The results 

are therefore applicable to the months of February and March only. Therefore, there is 

need to conduct similar study during wet months of the year to introduce adequate 

variation in especially temperature given that temperature is a very important 

influence in chlorine decay in water distribution systems. This will allow development 

of a generalized model that applies throughout a year (Garcia-Avila et al., 2020). The 

pipelines in the study area were of plastic (HDPE) material. Similarly, application of 

results is therefore limited to plastic pipelines.  

 5.5   Recommendations  

The following recommendations follow from this research: 

1. National Water and Sewerage Corporations in particular and water utilities in 

general should remove dissolved salts as much as possible at water treatment 

plants to minimize uptake of residual chlorine immediately at start of water 

supply. 

2. National Water and Sewerage Corporations in particular and water utilities in 

general should clean (flush) pipeline routinely and regularly to avoid build-up of 

sediments of salt precipitates that can re-dissolve to deplete residual chlorine. 

3. National Water and Sewerage Corporations in particular and water utilities in 

general should adopt water zoning approach for managing residual chlorine in 
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gravity water distribution. Intermediate reservoirs that traditionally are used to 

balance pressure and regulate water demand should as well be used as points of 

secondary chlorination (online chlorine boosting) points. This will reduce distance 

and boost final residual chlorine to above 0.2 mg/l. Table 5.1 contains the 

recommended initial chlorine at water zone intermediate tanks. The initial chlorine 

concentrations are based on minimum, mean and maximum electrical 

conductivities observed in gravity distribution network in Table 4.1. Equation 4.10 

was used to determine these proposed initial chlorine concentrations. 

Table 5. 1: Recommended initial chlorine for each Lirima gravity water zones. 

S. N Water zone Farthest 

distance 

(Km) 

Initial chlorine concentration 

(mg/l) 

Electrical conductivity (µSiem/cm) 

Minimum 

65.40 

Mean 

70.01 

Maximum 

78.50 

1 Musiye-Nalukwade 5.34 0.32 0.36 0.44 

2 Butiru-Manyeke 4.90 0.31 0.35 0.43 

3 Butiru-Vermiculite 7.56 0.37 0.41 0.49 

 

4. Regulatory bodies should revise design manuals to allow future designs of 

intermediate water tanks that should be used as secondary chlorination points to 

(1) be limited to maximum water depth of 0.63 m to minimize high and excessive 

flow velocities and (2) plan area be increased to accommodate design volume.  

5. The practice of using laboratory determined bulk chlorine decay constant to design 

decay in water distribution networks should be avoided because the environmental 

conditions in laboratories and within water distribution system differ. Instead, 

chlorine decay constants determined from water age should be used. 
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6. Not until future works show otherwise, data-driven models should be preferred 

over process models in water quality management to achieve predictability of 

water quality parameters in water distribution networks. 
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APPENDICES 

Appendix I: Letter A.1:  Request by Kyambogo University to NWSC for permission to study 

Lirima gravity scheme 

     

Department of Civil and Building Engineering 

P. O. BOX 1, KYAMBOGO – P. O. BOX 7181 KAMPALA, UGANDA 

Website: www.kyu.ac.ug, Email: civil@kyu.ac.ug  

TEL: +256-41-4287340, FAX: +256-41-4289056/4222643 

November 11, 2020 

Manager – Research and Development, 

International Resource Center - National Water and Sewerage Corporation, 

Old Port Bell Road, Kampala, Uganda. 

 

Dear Eng./Dr./Sir, 

RE: REQUES T TO CONDUCT RESEARCH ON MODELLING CHLORINE DECAY IN 

WATER DISTRIBUTION USING LIRIMA GRAVITY WATER FLOW SCHEME AS A 

CASE STUDY  

Mr. Julius Caesar Kwio-Tamale is a student of Kyambogo University undertaking Master of Science 

in Water and Sanitation Engineering at the Department of Civil and Building Engineering. He is 

conducting a research study on "Comparison of Performance of Models in Predicting Space -Time 

Decay of Chlorine in Gravity Water Flow Systems: Case Study of Lirima Gravity Water Flow 

Scheme". The researcher is being supervised and co-supervised by Dr. Charles Onyutha and Eng. Dr. 

Anne Nakagiri, respectively.  

 

According to the World Health Organization report of 2014, the minimum and maximum residual 

chlorine concentrations in drinking water are recommended to be 0.2 mg/l and 5 mg/l, respectively. 

Ensuring the recommended range of chlorine concentration at all time in drinking water at the water 

draw off points is normally a difficult task. Either there is over-dosage or under-dosage of the 

chlorine in drinking water. Chlorine over-dosage leads to production of disinfection by-products that 

may cause cancer, reproductive disorders, liver and kidney damage, birth defects, and miscarriage. 

Over-dosage of chlorine also makes the water corrosive to pipes and objectionable in terms of taste 

and color. On the other hand, under-dosage of chlorine promotes re-growth of microbials thereby 

leading to infections of consumers. Attempts to keep chlorine concentrations in drinking water within 

the recommended range of 0.2-5 mg/l tends to be possible through modelling and predictions. 

http://www.kyu.ac.ug/
mailto:civil@kyu.ac.ug
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The main problem with modelling chlorine lies in the complexity of capturing the dynamics of 

chlorine decay amidst several practical factors such as, temperature, pH, and turbidity. This research 

attempts to partially solve this problem by modelling the decay of chlorine in both space and time. 

To do so, this research requires large amount of data (such as chlorine dosage, free chlorine, water 

temperature, and turbidity) to be measured or tested based on samples from a reasonable number of 

locations from a water distribution network. This research has a number of specific objectives (see 

next page) and will yield information that can be used to improve knowledge regarding chlorine 

dosage amidst practical field conditions to ensure the water quality meets the recommended World 

Health Organization concentration limits 0.2-0.5 mg/l of chlorine. 

The purpose of this letter is to request your office to allow Julius Caesar Kwio-Tamale (with the help 

of the support from your team in the National Water and Sewerage Corporation branch where the 

study area is located) to (i) identify suitable locations for sampling, (ii) take samples , and (iii) test the 

samples in your laboratory, (iv) avail the student any other necessary information or services that 

will be required for the research. In the same line, this request is also to allow you ensure the student 

conducts laboratory tests at subsidized prices since there will be many samples. 

In line with ethical considerations and courtesy to your permission, Kyambogo University will share 

and discuss results of the study with National Water and Sewerage Corporation before dissemination.  

I shall be grateful for any assistance rendered to Mr. Julius Caesar Kwio -Tamale to allow him 

conduct his research study timely. 

 

Yours Sincerely, 

 

Dr. Lawrence Muhwezi, 

Head of Department of Civil and Building Engineering 

 

Cc. Dean, School of Graduate Studies , Kyambogo University 

      Dr. Charles Onyutha - Department of Civil and Building Engineering, Kyambogo University  

      Eng. Dr. Anne Nakagiri - Department of Civil and Building Engineering, Kyambogo University  

 

The specific objectives of this study are; 

a) to characterize gravity water distribution parameters in relation to chlorine decay, 

b) to assess space-time decay of chlorine in gravity flow distribution systems, 

c) to compare performance of various models that predict residual chlorine concentration, and  

d) to identify the appropriate model(s) for residual chlorine decay in gravity water flow system. 
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Appendix II: Letter A.2: Permission letter of NWSC for research on Lirima gravity flow scheme
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Appendx III:  Questionnaire for Data on NWSC Lirima gravity flow scheme 

Date: ………………………   Respondent: …………………………………………………. 

1.  Background 

This research aims to model residual chlorine decay in water from treatment plant to 

water consumption points. To do this, key water quality and water infrastructure 

parameters are to be collected. Other operational variables will also be collected. 

2. Chlorine dosage  at Lirima treatment plant 

What is the initial chlorine dosage at the treatment plant after chlorination? 

……………………………………………………………………………. (mg/l) 

How frequent is chlorine dosage at the treatment plant? Please state your response 

below: ………………………………………………………………………………… 

3. Secondary chlorination: 

Is secondary chlorination done in the transmission and distribution network?  Please 

tick the applicable box.    Yes               No. 

 

4. Network water quality monitoring 

(a)  At what points is water quality monitoring done in the transmission and 

distribution network?  Please state your response below.  

………………………………………………………………………………………… 

(b)  How frequently is water quality monitoring done in the transmission and 

distribution network?  Please state your response below.  

………………………………………………………………………………………… 

5. Nature of water supply 

(a)  What is the nature of water supply?  Please tick the applicable box.     

Continously                        Intermittently 

(b)  If water supply is intermittent, for how many hours is it supplied on a given day? 

Please state your response below.  

………………………………………………………………………………………… 

END OF QUESTIONNAIRE 

THANK YOU FOR YOUR RESPONSE 
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Appendix IV: Table A.1:  Water quality parameter test values at Lirima gravity 

water treatment plant 
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Appendix V: Table A.2: GPS co-ordinates of water transmission lines of Lirima Gravity Scheme 

Item Description Latitude Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

Pipe 

material 

DN 

1 Lirima WTP 36 N 0657122 0098196 1812 HDPE 250 

        
2 BPT1 36 N 0656161 0097372 1757 HDPE 250 

        

3 BPT2 36 N 0656025 0097335 1722 HDPE 250 

        

4 BPT3  065538 0097085 1661 HDPE 250 

        

5 GV//T-Junction to 

Bumbo TC 

36 N 0654761 0096706 1618 HDPE 250 

        

6 AV 36 N 0654747 0096701 1614 HDPE 250 

        

7 GV at Magale TC 36 N 0652130 0095728 1571 HDPE 250 

        

8 Bend at Magale 36 N 0652002 0095850 1559.5 HDPE 250 

        

9 Exposed Pipe 36 N 0651842 0095303 1532 HDPE 250 

        

10 T-Junction at Magale 36 N 0651605 0095025 1525 HDPE 250 

        

10 BPT4 36 N 0651300 0094852 1521 HDPE 250 

        

11 AV at Nalukwade 36 N 0650304 0094755 1449.5 HDPE 250 

        

12 Exposed Pipe @  

R. Natsekhe 

36 N 0649612 0094865 1425 HDPE 250 

        

13 AV at Buwanzaala 36 N 0649612 0094862 1434 HDPE 250 

        

14 AV at Maala 36 N 0648664 0094287 1453 HDPE 250 

        

15 SV at Mufutu 36 N 0647909 0094073 1435 HDPE 250 

        

17 Musiye T-Junction 36 N 06477907 0094069 1438 HDPE 250/
100 

        

18 BPT5 36 N 0647589 0098151 1417 HDPE 250 

        

18 Musiye Wash-out 36 N 0647787 0093089 1443 HDPE 100 

        

19 AV at Musiye 36 N 0647726 0092798 1465 HDPE 100 

        

20 90 turn to Musiye Tank 36 N 0637725 0092786 1463 HDPE 100 

        

21 Musiye Reservoir 36 N 0647596 0092792 1468 HDPE 100 

        

18 BPT5 36 N 0647589 0098151 1417 HDPE 250 

        

22 Bufumo 36 N 0649032 0092351 1240 HDPE 80 

        

23 Buwanyera 36 N 0647532 0092251 1241 HDPE 80 

        

24 Busike 36 N 0644730 0091989 1302 HDPE 80 

25 Butiru T-Junction  0643987 0090896 1339 HDPE 80 

26 Butiru Reservoir 36 N 0644672 0090204 1354 HDPE 250 
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Appendix VI: Table A.3: GPS co-ordinates of water distribution lines of Lirima 

Gravity Scheme 

(a)   Mufutu-Nalukwade trading centre water distribution zone 

Item Description Latitude Northing 
 

(Y) 

Easting 
(UTM) 

(X) 

Elevation 
 

(Z) 

Pipe 
material 

DN 

1 Mufutu ClearWater Tank 
Outlet 

36 N 0657047 0098134 1442.69 HDPE 100 

        

2 Wash out 36 N 0647782 0093081 1448 HDPE 100 

        

3 Mufutu village 36 N 0647939 0094061 1440 HDPE 100 

        

4 Maala village 36 N 0648893 0094381 1447 HDPE 100 

        
5 Nalukwade village 36 N 0649591 0094872 1432 HDPE 100 

        

6 Nalukwade trading 
centre 

36 N 0650255 0094766 1457 HDPE 100 

        

(b)   Butiru-Makenye water distribution zone 

Item Description Latitude Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

Pipe 

material 

DN 

1 Butiru Water Tank 

Outlet 

36 N 0644672 0090204 1354 HDPE 80 

        

2 T-Junction to Makenye 36 N 0643987 0090896 1339 HDPE 80 

        

3 At Clinic 36 N 0644031 0090915 1260 HDPE 80 

        

4 Buwasike village: 36 N 0644730 0091989 1302 HDPE 80 

        

5 Buwanyera village: 36 N 00647532 0092251 1241 HDPE 80 

        

6 Wash out 36 N 0646051 0093782 1276 HDPE 80 

        

7 Bumafumo village 36 N 00649032 0092351 1240 HDPE 80 

 

(c)   Butiru-Vermiculite water distribution zone 

Item Description Latitude Northing 
 

(Y) 

Easting 
(UTM) 

(X) 

Elevation 
 

(Z) 

Pipe 
material 

DN 

1 Butiru Police Station 36 N 0643763 0091147 1262 HDPE 80 

        

2 Bunangabo Cell 36 N 0642610 0092246 1261 HDPE 80 

        

3 Buwayo Cell 36 N 0643119 0091879 1262 HDPE 65 

        

4 Bamukesi village 36 N 0642609 0092229 1257 HDPE 65 

        

5 Bamulatte village 36 N 0642609 0092229 1224 HDPE 50 
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(d)   Musiye-Bubuto water distribution zone 

Item Description Latitude Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

Pipe 

material 

DN 

1 Mufutu ClearWater 

Tank Outlet 

36 N 0657047 0098134 1442.69 HDPE 100 

        

2 S1 36 N 0647830 0093135 1451 HDPE 100 

        

3 SV & T-J 36 N 0647734 0092776 1471 HDPE 100 

        

4 S3 36 N 0647734 0092757 1470 HDPE 65 

        

5 S4 36 N 0647734 0092740 1470 HDPE 65 

        

6 S5 36 N 0647729 0092709 1471 HDPE 65 

        
7 S6 36 N 0647725 0092673 1470 HDPE 65 

        

8 S7 36 N 0647685 0092571 1469 HDPE 50 

        

9 S8 36 N 0647541 0092260 1459 HDPE 50 
        

10 S9 36 N 0647532 0092251 1451 HDPE 50 

        

11 S10 36 N 0647532 0092251 1474 HDPE 50 

 

Table A.4: GPS co-ordinates of water yard taps on Lirima Gravity Water Scheme 

(a)  Mufutu-Nalukwade trading centre water distribution zone 

Item Description Latitude Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

Pipe 

material 

DN 

1 Namawanga 36 N    Cast Iron 15 

2 Mufutu 36 N 0647939 0094061  Cast Iron 15 

3 Maala 36 N    Cast Iron 15 

4 Natsekhe wash-out 36 N    Cast Iron 15 

5 Nalujwade 36 N 0649597 0094876 1466 Cast Iron 15 

 

(b)  Butiru-Makenye water distribution zone 

Item Description Latitude Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

Pipe 

material 

DN 

1 Butiru Clinic 36 N 0644031 0090915 1270 Cast Iron 15 

2 Buwasike Village:  36 N 0647532 0092251 1252 Cast Iron 15 

3 Buwanyera 

Village: 

36 N 0647532 0092251 1242 Cast Iron 15 

4 Bufumo Village: 36 N    Cast Iron 15 
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(c)   Butiru-Vermiculite water distribution zone 

Item Description Latitude Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

Pipe 

material 

DN 

1 Butiru Police Station 36 N 0643705 0091118 1291 Cast Iron 15 

2 Buwayo Cell 36 N 0643198 0091951 1259 Cast Iron 15 

3 Bunangabo Cell 36 N 0642610 0092246 1232 Cast Iron 15 

4 Bamukesi Village 36 N 0642609 0092229 1265 Cast Iron 15 

5 Bamulatte Village 36 N 0642609 0092229 1226 Cast Iron 15 

6 Bunabiro Village 36 N 0642609 0092229 1214 Cast Iron 15 

 

(d)   Musiye-Bubuto water distribution zone 

Item Description Latitude Northing 

 
(Y) 

Easting 

(UTM) 
(X) 

Elevation 

 
(Z) 

Pipe 

material 

DN 

1 Musiye caretaker’s home 36 N 0647830 0093135 1452 Cast Iron 15 

        

2 S3 36 N 0647734 0092757 1471 Cast Iron 15 

        

3 S4 residence of LC3 

Chairperson Elect -
Buwambo SC 

36 N 0647734 0092740 1470 Cast Iron 15 

        

4 S5 36 N 0647742 0092705 1470 Cast Iron 15 

        

5 S6 36 N 0647734 0092670 1470 Cast Iron 15 

        

6 S7 (Musiye P/Sch) 36 N 0647658 0092594 1473 Cast Iron 15 

        

7 S8 36 N 0647532 0092251 1466 Cast Iron 15 

        

8 S9 36 N 0647532 0092251 1451 Cast Iron 15 

        

9 S10 36 N 0647532 0092251 1466 Cast Iron 15 

        

10 S11 36 N 0647532 0092251 1475 Cast Iron 15 
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Appendix VII: Table A.5: GPS co-ordinates of water tanks on Lirima Gravity Water 

Scheme 

Item Tank 

type 

Location Size GPS Co-ordinates 

   Diameter  

 

(m) 

Height 

 

(m) 

Northing 

 

(Y) 

Easting 

(UTM) 

(X) 

Elevation 

 

(Z) 

1 WTP Lirima  3.00 3.00    

2 BPT 1 Lirima  3.00 3.00 0656161 0097372 1757 

3 BPT 2 Lirima 3.00 3.00 0656025 0097335 1722 

4 BPT 3 Bumbo 3.00 3.00 0644041 0099917 1661 

5 BPT 4 Magale  6.30 3.00 0651300 0094752 1521 

6 BPT 5 Musiye 6.30 3.00 0647589 0093751 1417 

7 BPT 6 Butiru 10.50  0644672 0090204 1354 

 

NB: WTP denotes Lirima Water Treatment Plant 

 

Figure A.1:  Combined water transmission and distribution mains of Lirima gravity 

scheme  
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(a) Chlorine calibration statistics: (1) Mean error =  0.001mg/l (2)  R2 = 0.999 

 

(b) Correlation plot for observed (blue) and modeled (red) chlorine 

concentrations  

 

(c) Comparison of observed (blue) and modeled (red) chlorine concentrations  

 

Figure A.2:  Performance of EPANET model for Mufutu-Nalukwade water zone: 

Day8_Run1 demand model cross-validated with Day1_Run3 chlorine data 
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(a) Chlorine calibration statistics: (1) Mean error =  0.773 mg/l (2)  R2 = 0.937 

 

(b) Correlation plot for observed (blue) and modeled (red) chlorine 

concentrations  

 

(c) Comparison of observed (blue) and Modeled (red) chlorine concentrations  

 

Figure A.3:  Performance of EPANET model for Butiru-Vermiculite water zone: 

Day3_Run2 demand model cross-validated with Day7_Run1 chlorine data 
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(a) Chlorine calibration statistics: (1) Mean error =  0.002 mg/l (2)  R2 = 0.997 

 

(b) Correlation plot for observed (blue) and modeled (red) chlorine 

concentrations  

 

(c) Comparison of observed (blue) and modeled (red) chlorine concentrations  

 

Figure A.4: Performance of EPANET model for Butiru-Manyeke water zone: 

Day5_Run1 demand model cross-validated with Day2_Run1 chlorine data 
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Appendix VIII: Table A.6: Two principal component solution analysis statistics 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin measure of sampling adequacy. 0.510 

Bartlett's test of sphericity Approx. Chi-Square 12.741 

df 3 

Sig. 0.005 

 

 

Communalities  

 Initial Extraction 

initial_chlorine 1.000 0.652 

distance 1.000 0.653 

EC 1.000 1.000 

Extraction Method: Principal 

Component Analysis. 

 

 

 

 
 

 

Total Variance Explained 

 

    

Component 

Initial Eigenvalues 

Extraction sums of squared 

Loadings 

Rotation sums of squared 

Loadings 

Total 

% of 

Variance Cum % Total 

% of 

Variance 

Cum 

% Total 

% of 

Varian

ce Cum% 

1 1.322 44.061 44.061 1.322 44.061 44.061 1.305 43.488 43.488 

2 0.983 32.771 76.832 0.983 32.771 76.832 1.000 33.344 76.832 

3 0.695 23.168 100.000       

Extraction Method: Principal Component Analysis. 

 

 
 
 

 
 

 
 
 

 

Rotated Component Matrixa 

 
Component 
1 2 

distance 0.808  

initial_chlorine 0.807  

EC  0.999 

Extraction Method: Principal 

Component Analysis.  

 Rotation Method: Equamax with 

Kaiser Normalization.a 

a. Rotation converged in 3 

iterations. 
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Appendix IX: Table A.7: Three principal component solution analysis statistics 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.510 

Bartlett's Test of 

Sphericity 

Approx. Chi-Square 12.741 

df 3 

Sig. 0.005 

 

 

Communalities  

 Initial Extraction 

initial_chlorine 1.000 1.000 

distance 1.000 1.000 

EC 1.000 1.000 

Extraction Method: Principal 

Component Analysis. 

 

 

 

 

Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cum 

% Total 

% of 

Variance Cum % Total 

% of 

Variance 

Cum 

% 

1 1.322 44.061 44.061 1.322 44.061 44.061 1.000 33.336 33.336 

2 0.983 32.771 76.832 0.983 32.771 76.832 1.000 33.332 66.668 

3 0.695 23.168 100.00

0 

0.695 23.168 100.000 1.000 33.332 100.000 

Extraction Method: Principal Component Analysis. 

 

 

 

 

 

 

 

Rotated Component Matrixa 

 

Component 

1 2 3 

EC 0.999   

distance  0.988  

initial_chlorine   0.988 

Extraction Method: Principal Component 

Analysis.  

 Rotation Method: Equamax with Kaiser 

Normalization.a 

a. Rotation converged in 3 iterations. 
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Appendix X: Table A8: Four principal component solution analysis statistics 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy. 

0.547 

Bartlett's Test of Sphericity Approx. Chi-Square 271.410 

df 45 

Sig. 0.000 

 

 
 

 

 

Total Variance Explained 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 
Loadings 

Total 

% of 

Variance 

Cum 

% Total 

% of 

Variance Cum% Total 

% of     

Variance 

Cum 

% 

1 2.582 25.819 25.819 2.582 25.819 25.819 2.315 23.153  23.153 

2 1.500 15.001 40.820 1.500 15.001 40.820 1.526 15.263 38.416 

3 1.431 14.307 55.126 1.431 14.307 55.126 1.445 14.452 52.869 

4 1.002 10.017 65.144 1.002 10.017 65.144 1.228 12.275 65.144 

5 0.907 9.067 74.211       

6 0.746 7.464 81.675       

7 0.726 7.255 88.930       

8 0.501 5.013 93.943       

9 0.416 4.162 98.104       

10 0.190 1.896 100.00

0 
      

Extraction Method: Principal Component Analysis. 
 

Rotated Component Matrixa 

 
Component 

1 2 3 4 

initial_ 

chlorine 

0.244 0.122 0.132 0.856 

distance 0.871 0.149 - 0.028 0.190 

travel_ti

me 

0.834 0.095 - 0.065 0.160 

diametre 0.834 - 0.069 - 0.061 - 0.020 

turbidity 0.106 - 0.052 - 0.786 - 0.090 

EC -  0.029 - 0.231 0.614 - 0.091 

pH 0.127 0.457 - 0.276 0.101 

temp 0.148 0.233 0.534 - 0.622 

pressure 0.180 0.782 0.207 0.080 

velocity         -  0.152 0.738 - 0.146 - 0.110 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Equamax with Kaiser 

Normalization.a 
a. Rotation converged in 6 iterations. 

 

Communalities  

 Initial Extraction 

initial_chlorin

e 

1.000 0.825 

distance 1.000 0.817 

travel_time 1.000 0.734 

diametre 1.000 0.705 

turbidity 1.000 0.639 

EC 1.000 0.439 

pH 1.000 0.312 

temp 1.000 0.748 

pressure 1.000 0.693 

velocity 1.000 0.602 

Extraction Method: Principal 

Component Analysis.  




