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Abstract 

Several land use/cover changes have been observed in Ogwapoke micro catchment. Population 

increase, poverty, intensified and unsustainable farming practices and deforestation have been 

cited as the major drivers of land use/cover changes in the micro catchment. Land use/cover 

changes have been linked with increased surface runoff and soil erosion. However, there is a 

paucity of information to ascertain the impacts of land use/cover changes on soil erosion in 

Ogwapoke micro-catchment, Northern Uganda. Therefore, the study aimed to identify 

conservation measures and drivers that lead to continuous changes in land use/cover in order to 

combat the long-term effects of soil erosion on hydrological flow in Ogwapoke micro catchment. 

Specifically, the study aimed to (i) analyze and predict the spatial-temporal changes in land 

use/cover changes between 1986, 2003, 2020 and 2040 in Ogwapoke micro catchment; (ii) 

determine the effect of land use/cover change on soil erosion in Ogwapoke micro catchment; and 

(iii) assess the impact of land use/cover change on hydrological flow in Ogwapoke micro 

catchment.  

Landsat images for the study area for 1986, 2003 and 2020 were downloaded from Earth 

explorer. Unsupervised classification and the CA-Markov model were used to analyze and 

predict the land use/cover changes respectively. Questionnaires were also administered to 200 

respondents in the study area to understand their perceptions of land use/cover changes including 

the drivers. The Revised Universal Soil Loss Equation (RUSLE) and the Soil and Water 

Assessment Tool (SWAT) models were used to assess the soil erosion and hydrological flow 

components (total yield, base flow, surface runoff, lateral flow, deep aquifer recharge, and actual 

evapotranspiration), respectively. The Pearson correlation coefficient was applied to assess the 

effect of land use/cover changes on hydrological flow components.  

Results showed that significant land use/cover changes have taken place in Ogwapoke micro 

catchment. Between 1986 and 2020, small-scale farmlands and built-up areas increased by 

35.1% and 2.4%, respectively whereas bushlands, grasslands, wetlands and woodlands decreased 

by 11.7%, 7.4%, 2.4%, and 15.9% respectively. A similar pattern is projected to further intensify 

by 2040. Changes in land use/cover are mostly driven by over grazing, deforestation, poverty, 

bush burning, deforestation, and increased demand for food due to population growth. The 

changes in land use/cover had an effect on soil erosion in Ogwapoke micro catchment. Small-
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scale farmlands has very high soil erosion compared to other land use/cover types. Changes in 

land use/cover had a significant effect on hydrological flow components in the micro catchment. 

Between 1986 and 2020, surface runoff and total water yield increased by 15 mm/yr and 2.2 

mm/yr, respectively whereas base flow, lateral flow, deep aquifer recharge and actual 

evapotranspiration decreased by 12.1 mm/yr, 0.09 mm/yr, 1.1 mm/yr and 1.18 mm/yr, 

respectively. Mixed hydrological responses are expected in 2040 due to future land use/cover 

changes. Surface runoff and base flow were positively correlated to changes in small-scale 

farmlands and grasslands (R2 =0.97; R2 =0.99 respectively). 

The study concludes that the changes in land use/cover in Ogwapoke micro catchment have had 

a significant impact on soil erosion and hydrological flow components. The study recommends 

the government to encourage tree planting in the micro catchment and regulate small-scale 

farming in wetland ecosystems; the communities should be sensitized about the sustainable land 

management practices; and there is a need for the decision makers to establish a hydro-

meteorological network in the micro-catchment. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Changes in land use/cover are considered as the most significant indicators of global change 

(Mahmood et al., 2010). In recent years, land use/cover changes have received a great deal of 

attention in a variety of sectors, for example remote sensing, political ecology and in the 

distribution of species and ecosystems in a particular geographic space over time (Hasan et al., 

2020).  This is because human activities have been affecting the ecosystem for thousands of 

years as a result of tremendous population growth, migration, and rapid socio-economic activity 

that have intensified these environmental changes over the past centuries (Chen et al., 2021). 

Deforestation, agricultural expansion, and urbanization have all contributed to an increase in a 

variety of environmental issues, including soil acidification, nutrient leaching, and organic matter 

depletion (Sharma et al., 2011), climate change, water withdrawals, soil erosion, and habitat 

destruction ( Reid et al., 2000; Rao & Pant, 2001; Turner et al., 2007). 

Researchers like Wairiu (2017) have identified poor farming techniques, overgrazing, bush 

burning, and construction as important drivers of soil run-off, which results in air pollution, soil 

fertility loss, desertification, and the destruction of infrastructure projects in recent years. 

However, the environmental consequences of soil erosion as a result of intensive land use/cover 

changes are manifested by human activities such as soil productivity and agricultural output 

decline (van Oost et al., 2002) and deteriorating water through carrying pollutants such as 

pesticides and heavy metals into surface water bodies (Boers, 1996; van Oost et al., 2002). 

According to Borrelli et al (2016),  changes in land use have resulted in organic matter depletion, 

erosion, soil degradation, salinization, and crusting in Mediterranean areas. Agriculture, grazing, 

mining, charcoal, and biomass production, as well as traditional land uses, have resulted in low 

soil fertility and a heavily degraded landscape. In addition, soil erosion caused by unsustainable 

farming methods in East Africa has resulted in high levels of eutrophication and water hyacinth 

infestation on Lake Victoria (Raytheon et al., 2002; Albright et al., 2004). 
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A number of studies have also revealed that changes in land use/cover have a substantial impact 

on soil erosion. Yang et al (2003) examined the global situation of soil erosion risk, taking into 

account the past century as well as the present and future, and discovered that Asia was the most 

impacted region globally. As a result, a number of studies have used historical and current 

satellite data to investigate land use/cover change (LULC) in relation to changes in soil erosion 

in order to determine the effect of LULC on soil eroding (Jordan et al., 2005). Several studies 

(Favis-Mortlock & Boardman, 1995; Jordan et al., 2005; Wynants et al., 2018) have been 

undertaken in recent years to assess the impact of LULC on soil erosion at various temporal and 

spatial dimensions, including micro watershed levels.  

However, some of these researches concentrated solely on the effect of vegetation on soil erosion 

under a single-vegetation land use type, such as woodlands (El Kateb et al., 2013), shrub lands 

(Garcia-Estringana et al., 2013), abandoned land (Li et al., 2016), pasture (de Koff et al., 2011), 

and cultivated land (Sasal et al., 2010) which are parallel different in this research  study of 

Ogwapoke micro catchment. On the other hand, studies that have generalized and focused on 

each land covers and its impacts on soil erosion have been carried out in developed 

Mediterranean and European continents leaving a bigger research gap in developing countries. 

Other studies (Breuer et al., 2009; Tang et al., 2011) also agree that stream flow generation 

capacity is dependent on land use/cover changes. As a result, a hydrological model that takes 

into account spatio-temporal watershed characteristics is required to aid in the accurate 

prediction of a watershed's dynamic water balance (Costa et al., 2003; He & Hogue, 2012).  

However, soil erosion assessment as a result of land use/cover changes has been computed using 

a number of indicator-based approaches. The USLE model and its modified Revised Universal 

Soil Loss Equation (RUSLE) model (Bonilla & Johnson, 2012) that is integrated with GIS is still 

widely used because of its simplicity and variety of inputs (soil erodibility, topographic 

variables, rainfall erosivity, and crop management factors). As a result of the rising population 

pressure in the micro catchment, which has exacerbated the demand for land despite its terrain, it 

is vital to explore the effects of these changes on soil erosion at the micro catchment scale.  The 

findings of this study are useful in developing mitigation strategies and increasing local farmers', 

agricultural extension workers', and policymakers' understanding of the implications of 

environmental degradation (soil erosion, river siltation). 

about:blank
about:blank
about:blank
about:blank
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1.2 Problem Statement 

The population in Uganda has greatly increased and the annual growth rate is about 3.3 percent 

(UBOS, 2016). This has resulted into rapid development that is evidenced in the changes of land 

use/cover attributed to impervious surfaces, increased agriculture and settlements as seen through 

bush burning, poor farming methods, over grazing, tree cutting for fuel etc. The changes in land 

use/cover (LULC) have partially affected a number of catchments and micro catchment within 

the region including Ogwapoke micro catchment. In order to control on the adverse effects on 

LULC, there has been several initiatives by the Government of Uganda and communities to carry 

out conservation measures including re-afforestation, mulching, vegetated stripping, live 

hedging, and contour ploughing among others. 

Despite the government’s efforts, land use/cover changes have continued. Between 2000 and 

2020, subsistence farmlands and built-up areas in Ogwapoke micro catchment increased by 5.3% 

and 2.2% respectively whereas grasslands, wetlands and woodlands decreased by 1%, 6.6% and 

5.6% respectively (MWE, 2020a). Population increase, poverty, intensified and unsustainable 

farming practices and deforestation have been cited as the major drivers of land use/cover 

changes in the micro catchment (MWE, 2016). LULC have been linked with increased surface 

runoff and soil erosion (Peng & Wang, 2012). This is the case in Ogwapoke micro catchment 

(MWE, 2016, 2020b).  

Besides, most of the studies about land use/cover changes especially in Uganda have been done 

at either catchment or sub-catchment levels (Nyeko, 2010; MWE, 2016; Barasa et al., 2017; 

Kiggundu et al., 2018; Bunyangha et al., 2021). There is limited literature of such studies at the 

micro catchment level, and yet, assessment at the micro catchment level allows a deeper 

understanding of the effect of land use/cover changes on surface runoff as well as community 

participation in issues pertaining hydrological conservation (Guzha et al., 2018). Therefore, the 

study aimed to contribute to this knowledge gap by assessing the impacts of land use/cover 

changes on soil erosion in Ogwapoke micro catchment. The study is timely to guide the policy 

and decision makers in the Upper Nile Water Management Zone about the feasible conservation 

measures to reduce soil erosion and enhance the underground water in Ogwapoke micro 

catchment.  
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1.3 Objectives 

1.3.1 General objective 

The purpose of the research was to identify conservation measures and drivers that lead to 

continuous changes in land use/cover in order to combat the long-term effects of soil erosion on 

hydrological flow in Ogwapoke micro catchment. 

1.3.2 Specific Objective 

1. To analyze and predict the spatial-temporal changes in land use/cover changes between 1986, 

2003, 2020 and 2040 in Ogwapoke micro catchment. 

2. To determine the effect of land use/cover change on soil erosion in Ogwapoke micro 

catchment. 

3. To assess the impact of land use/cover change on hydrological flow in Ogwapoke micro 

catchment.  

1.4 Research Questions 

1. To what extent has land use/cover changed in Ogwapoke micro catchment between 1986, 

2003 and 2020? 

2. What is the future state of land use/cover trend in Ogwapoke micro catchment in 2040?  

3. What is the effect of land use/cover changes on soil erosion in Ogwapoke micro catchment?  

4. What is the impact of land use/cover changes on evapotranspiration, surface runoff and total 

water yield in Ogwapoke micro catchment? 
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1.5 Conceptual Framework 

 

Figure 1. 1: Conceptual framework of the research study 

In Figure 1.1, changes in land use/cover have been mainly caused by population growth, 

intensification of agriculture and infrastructural developments (Onyutha et al., 2021). Land use 

activities such as deforestation and cultivation lead to forest cover decline, biodiversity loss, and 

they fuel the decreased soil quality (El Kateb et al., 2013). In the long-term, these lead to land 

degradation as well as deterioration of water quality through elevated concentration of 

compounds (e.g. nitrogen, phosphorous) and siltation caused by long-term agricultural and 

erosion effects (Geissen et al., 2009). 

Changes in land use, particularly farming on deforested and unsuitable areas, can rapidly degrade 

soil quality and cause stream flow declines because ecologically sensitive habitat components are 
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unable to mitigate the negative consequences. Seibert & McDonnell (2010) argued that 

deforestation and built-up area often exacerbate stream flows especially in hydrologically fragile 

sites like wetlands. LULC modification lowered water provision and hydrological processes in 

India's Pennar Basin (Garg et al., 2019). Sampaio et al (2007) reported that the net impact of 

deforestation is an increase in water yield and stream flow. Therefore, changes in the 

hydrological balance such as increased stream flow due to LULC may further aggravate the soil 

erosion in an area.  

1.6 Scope of the Research 

The analysis was based on changes in land use/cover for a period of 1986-2020 and prediction 

for 2040, as well as the impact of land use/cover change on soil erosion and hydrological flow. It 

was carried out in 2021 from Ogwapoke micro catchment in Kitgum, Northern Uganda. 

1.7 Significance of the Study 

Land use/cover maps will be used to guide land development decisions in urban areas, and create 

large-scale inventory of resources at the micro catchment, parish, sub-county, and district levels. 

The assessment will also show the biggest land use driver for land use/cover change in 

Ogwapoke micro catchment so that it can be regulated. 

Studies on the fluctuation of soil erosion in relation to land use can help people understand the 

phenomenon and apply suitable conservation measures. Estimating soil loss and identifying key 

places for following optimum management techniques are vital to a soil conservation project's 

success. The research will also contribute to a better scientific knowledge of the consequences of 

land use change on hydrological processes in the micro watershed, which will help with the 

sustainable management of water resources. 

The study will also help to improve scientific understanding of the effects of land use change on 

hydrological processes in the micro watershed, which will aid in the management of sustainable 

water resources. Thus, the availability of spatial mapping, modeling and evaluating changes in 

land use land and cover patterns, and soil erosion study will provide land use and cover 

information for future use or reference. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a literature review on changes in land use/ cover estimates, soil erosion 

modelling, hydrological flow modelling, and vegetation monitoring approaches and tools. It is 

divided into four major sections: literature on related studies, land cover change analysis, land 

cover prediction, soil erosion and hydrological flow. The chapter also reviews literature of 

different methodologies used in analyzing land cover and soil erosion. 

2.2 Analyzing and predicting the spatial-temporal changes in land use/cover  

Human interventions in the natural ecosystem are primarily responsible for changes in land 

use/cover. Meshesha et al (2016) defines "land cover" as the biological and physical 

characteristics of the land surface, which include vegetation (trees, grass), built-up areas 

(buildings, roads, paved land), and other land surfaces such as bare soil, water, and rocks. 

According to Wasige et al (2013), 

land use refers to anthropogenic activities performed on certain types of vegetations with the obj

ective of producing, altering or preserving it. Land use/ cover 

(LULC) alterations are the modifications to a specific type of vegetation that can alter the severit

y of its use as well as its qualitative characteristics. 

Rapid population increase, desire for wood and charcoal, building materials, agricultural 

practices, and policy and tenure ambiguity, are the key driving drivers for change in land 

use/cover (Wubie et al., 2016; Mwanjalolo et al., 2018). Changes in Lake water and other aquatic 

resources, soil depletion, habitat loss, and forest cover loss all have an influence on the local 

livelihoods and the  ecosystem (Wubie et al., 2016). The cumulative effect of these consequences 

result in poverty and ecosystem deterioration. Human actions, particularly habitat conversion and 

degradation, are causing global biodiversity losses (Newbold et al., 2015). Significant activities 

include tree cutting, charcoal burning, and poor farming methods, all of which affect ecosystem 

functionality.   

Agriculture techniques and approaches targeted at boosting contemporary agriculture may result 

in the quick conversion of natural vegetation to agricultural land (Popp et al., 2017). Agriculture 

practices and tactics aimed at bolstering modern agriculture may result in a quick conversion of 

natural vegetation to agricultural farmland (Sambou, 2015). In the Democratic Republic of the 
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Congo, for example, agricultural expansion through shifting cultivation is a direct primary driver 

of deforestation in the Equatorial region (Samndong et al., 2018). More studies (Godar et al., 

2014; Specht et al., 2015), emphasize 76% of families in Brazil’s Atlantic forest use firewood on 

a regular basis, consuming an average of 686 kilograms of tree biomass per person per year; poor 

people, on the other hand, consume approximately 961 kilograms per year. 

Land use/cover types can be categorized based on various classification schemes for example  

LULC classification scheme by United State Geological survey (USGS), the national land cover 

classification scheme, and the FAO LULC classification scheme (Yang et al., 2017). In this 

study, the satellite images were classified into land use/cover types basing on the classification 

scheme by USGS. This is because the USGS scheme can be customized accordingly based on 

the region of interest. Despite substantial research on the impact of LULC change on watershed 

hydrology and erosion, many concerns remain unsolved. For example, the relationship between 

tree cover and hydrology are not well understood for watersheds including Ogwapoke micro 

catchment.   

Hydrologic circulation's response to land use planning and management is inextricably intertwin

ed (Garg et al., 2019; Li et al., 2019). Changes in land use/cover (LULC) are one of the elements 

that have a direct impact on a watershed's hydrological cycle (Getu Engida et al., 2021). Human 

activities induce LULC modification and have had a significant impact on the hydrological 

processes and water resources of the watershed (Marie Mireille et al., 2019). For example, LULC 

modification lowered water provision and hydrological processes in India's Pennar Basin (Garg 

et al., 2019).  

There are several approaches for researching  habitat changes, including GIS, remote sensing, 

and Google Earth, that can be employed to detect changes in land use/cover (Karakus et al., 

2015). Remote sensing is capable of monitoring large and hazardous areas, such as battle zones, 

where information is required in the past, present, and future. Several studies have employed 

Geospatial technologies to track changes in land use/cover (Guzha et al., 2018). To capture 

geospatial information, these systems employ a variety of cameras, multispectral scanners, and 

sensors (LIDAR and RADAR) with varying spectral and radiometric resolutions. These 

scanners, cameras and sensors are mounted on space craft platforms to produce satellite imagery 

(Guzha et al., 2018). The satellite imagery varies in imaging characteristics for example; 
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MODIS, ERADAS, Sentinel, SPOT, ASTER, LANDSAT, IKONOS, Quick Bird, Geoye and 

Landsat through its various series of satellites multi-spectral (MSS), Thematic Mapper (TM) and 

Enhanced  Thematic Mapper Plus TM sensor (ETM+) sensors  (Wang et al., 2010; Schroeder et 

al., 2019).  

2.2.1 Land use/cover prediction modeling 

There are many modeling tools in use for predicting changes in land use/cover, however, it is 

difficult to compare the performance of different modeling tools because the change in land 

use/cover (LULC) model can be inherently distinct in many ways (Kusuma, 2015; Regmi et al., 

2017; Nwaogu et al., 2018). The commonly used land use land cover modeling tools and 

techniques to model and predict changes in land cover  include GEOMOD, Cellular Automata 

(CA) Markov, Markov chain, etc (Pontius Jr. & Chen, 2006; Yirsaw et al., 2017). Although 

LULC models have existed for decades, developments in remote sensing, land inventory 

methodologies and computing power have resulted in the development of a wide range of 

distinct changes in land-use and land-cover models in the last five to ten years. For example the 

CLUE model framework, DINAMICO EGO, Markov-chain model among others (Verburg et al., 

2004).  Various simulation and empirical models have been used to forecast changes in LULC, 

but few have employed system dynamics models to identify the primary drivers (Rimal et al., 

2017). 

Spatial simulation models are effective tools for quantitative modeling, and some consider 

blending the Markov-chain model approach with cellular automata (CA) to be one of the finest 

solutions for analyzing LULC on different spatial scales (Girma et al., 2022). The CA-Markov 

model is a prominent model among several LULC simulation tools and methodologies for 

modeling both spatial and temporal changes (Hamad et al., 2018). Several prior studies 

investigated land use change patterns modelling using the CA-Markov model (Parsaie, 2016). 

This is evidenced in the way that, the CA-Markov model was successfully applied at the 

Arasbaran biosphere reserve in Iran to predict changes in LULC, which assists land use planners 

and policy makers when making suitable decisions for future land use difficulties. They stated 

that utilizing a CA-Markov model in land use policy formation can be beneficial, as well as 

serving as an early warning system.  
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However, Ozturk (2015) compared CA-Markov chain and Multi-layer Perceptron-Markov Chain 

(MLP-MC) models to forecast future change in LULC for the Atakum, Samsun urban expansion 

simulation in Turkey. According to the authors, the MLP-MC model outperformed the CA-

Markov model for projected scenario simulation.  On the other hand, Regmi et al (2017) 

compared CA-Markov and GEOMOD models to analyze and model the LULC dynamics in the 

Phewa lake watershed in Nepal. They discovered that CA-Markov chains worked well as an 

operational model for anticipating future LULC scenarios. Several planning and management 

tasks rely on analyzing, modeling, and comprehending the transition of habitant changes 

(Dezhkam et al., 2017; Regmi et al., 2017). Observing previous LULC aids in recognizing trends 

of change and future extrapolations. As a result, knowledge about historical, present, and 

projected change plays an important part in decision-making development (Hamad et al., 2018; 

Gemitzi, 2021).   

The CA Markov model is a hybrid of the CA filter principle with the Markov chain process. The 

CA model can be represented in equation 2.1. 

……………………………………………………………………2.1 

where S is the set of finite and discrete cellular states, N is the cellular field, t and t + 1 represent 

separate incidents, and f is the cellular state transformation rule in local space. 

 The Markov model is a process-based theory that forms a Markov random process system for 

prediction and optimal control theory. Equation 2.2 calculates the projection of land use/land 

cover changes based on the conditional probability formula - Bayes. 

 

…………………………………………………………………….2.2 

where S(t), S(t + 1) represent the system status at t or t + 1; and Pij is the transition probability 

matrix in a state, and is computed as in equation 2.3. 



11 
 

 

 

  …………………………………………2.3 

where, P is the Markov transition matrix P, i, j is the land use land cover type of the first and 

second time period, and Pij is the probability from land use and land cover type i to land type j. 

In this expression, n is the number of land use and land cover types in the target area, and “Pij” is 

the probability of transition of type i into that of type j from the initiation to the end. In the 

transition matrix, it requests that each rate is a non-negative quantity, and each line factor 0 to 1. 

The estimate of Markov chain is the relative frequency of transitions observed over the entire 

time. The result of the estimation can be used for prediction (Hamad et al., 2018). However, 

different studies have predicted future LULC using this model including (Aithal et al., 2014; 

Yirsaw et al., 2017). In this regard, there is an urgent need to estimate changes in land use over 

time and predict future scenarios. Therefore, the CA Markov available in Idrisi was implemented 

to predict and compare the land uses for some further period. 

2.3 Determining the effect of land use/cover change on soil erosion 

The processes of sediment dissociation, transport, and deposition generated by raindrop impact 

and moving water are referred to as water erosion and sedimentation (Julien, 1995; Yue et al., 

2019). Raindrop impact and moving water generate the most powerful forces. Erosion is a 

natural geological phenomenon induced by the movement of soil particles by water or wind, 

although some human acts, such as agronomic systems, forest conversion, and so on, would 

accelerate erosion rates. Erosion is triggered by a combination of factors such as steep slopes 

(Brandolini et al., 2018), climate (e.g. long dry periods followed by heavy rainfall), inappropriate 

land use, and land cover patterns (Ochoa et al., 2016). Water erosion and wind erosion are the 

two most common types of soil erosion, although only water erosion is simulated and explored in 

this study. 

Soil erosion is caused by both natural and man-made activities. Climate, land use/cover (LULC), 

parent rock material, and topography are all elements that might influence the extent of soil loss. 

Because of the earth's gravity, soil erosion is widespread in hilly and mountainous places with 
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steep slopes and complex topography. Higher slope gradients are more prone to soil erosion 

(Brandolini et al., 2018). Soil erosion by water is commonly thought to be a purely natural 

process induced by rainfall and water flow, but human actions considerably exacerbate the 

erosion through land cover change and soil structure disturbance caused by farming. Today land 

use/cover change is a significant driving agent of regional and global change (Munthali et al., 

2019).  

Large-scale land use/cover changes caused by deforestation, agricultural land expansion, and 

other human activities are causing changes in global systems and cycles. Changes in land 

use/cover have a direct impact on the atmospheric cycle and climate change, and the principal 

external agents of water erosion vary with changes in land use/cover and climate (Geist, 2003). 

The fastest rates of soil erosion occur during heavy rainfall or windstorms. Soil particles are 

generally separated, transported, or aid in a chemical reaction between rain water and rock 

minerals, resulting in surface crusting and erosion. Furthermore, parent rock material is a reliable 

indication of soil erosion vulnerability. Soil made from marl, gypsum, and shale, for example, 

has lesser erosion resistance than other soil types (Sang-Arun et al., 2006).  

Agricultural expansion without soil conservation methods can have significant negative 

consequences on soil, such as increased erosion and decreased fertility, which can lead to ground 

water pollution and river and lake eutrophication (Lamek et al., 2016). For example, traditional 

land uses and human activities such as agriculture, grazing, mining, charcoal and biomass 

production have resulted in organic matter exhaustion, erosion, soil degradation, salinization, and 

crusting in Mediterranean lands, resulting in low soil fertility and a highly eroded terrain 

(Borrelli et al., 2016). The rapid land-use changes taking place in the Lake Victoria basin, 

including the upper Rwizi micro-catchment, continue to contribute to land degradation. For 

instance, banana production in the Rwizi-micro catchment of southwestern Uganda is expanding 

rapidly in response to increasing demand for cooking banana in urban places in Uganda and 

neighboring countries (Mugonola et al., 2013). Because of this rapid increase, land use is shifting 

and marginal areas (wetlands, steep slopes, valley bottoms) are being converted to agricultural 

cultivation. These additional areas, however, may not be able to sustainably maintain agricultural 

output because they are prone to land degradation due to soil erosion. 
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Soil erosion has also been identified as a major non-point pollution source in several regions, 

causing severe damage each year. In the United States, for example, the net damage cost of 

erosion-related pollutants was estimated to be $3.2–$13 billion in 1980 (Olson et al., 2016). Soil 

erosion leads to preferential removal of a soil’s organic carbon and clay contents. As much as 

20% of carbon transported by eroded sediments may be released into the atmosphere as CO2 

(Lal, 2003; Polyakov & Lal, 2008). Soil erosion is directly related to food productivity reduction 

and water pollution, and may also reduce the ability of soil to mitigate the greenhouse effect. 

Excessive soil erosion, with its associated high rate of sedimentation in reservoirs and 

diminished fertility, has become a serious environmental issue for the country, with disastrous 

economic effects (Ganasri & Ramesh, 2016). For example, in Uganda's Rwizi watershed, erosion 

causes loss of topsoil, organic matter, and poor water penetration and retention. Crop failure and 

low yield are the outcomes of nutrients and moisture stress (Mugonola et al., 2013). 

Smallholder farmers must use water-smart technologies such as mulching, grass strips, runoff 

diversion, agro-forestry, and water harvesting to reduce soil erosion and land degradation. These 

methods are classified as soil and water conservation (SWC) technologies and encompass 

biological, physical, and management-related procedures (Bastiaanssen et al., 2007). Erosion 

control can take many different kinds in a variety of activities. Mechanical, physical, and 

biological methods can all be utilized to minimize erosion and control sedimentation (Holz et al., 

2015). Many of these technologies are classified as best management practices (BMPs) and are 

used in agriculture, construction, forestry, mining, and other land uses where erosion is an issue. 

BMPs are designed to prevent erosion at the lowest possible cost, and they are based on physical 

principles that govern water energy and soil erodibility (Stuart & Edwards, 2006; Pulley & 

Collins, 2019). 

2.3.1 Modeling Soil Erosion  

Several models have been created and are being utilized for research and operational purposes. 

The most well-known soil erosion models are the USLE (Universal Soil Loss Equation, 1965), 

Agricultural Non-Point Source model (AGNPS), Chemical Runoff and Erosion from 

Agricultural Management Systems model (CREAMS), Sediment River Network model 

(SedNet), EUROSEM (European Soil Erosion Model, 1993), RUSLE (Revised Universal Soil 

Loss Equation, 1997), EPIC (Erosion/Productivity Impact Calculator, 1984), PESERA (Pan-
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European Soil Erosion Risk Assessment, 2003), Rill Grow (a model for rill initiation and 

development, 1998), SEMMED (Soil Erosion Model for Mediterranean Regions, 1999), and 

EROSION3D are some well-known soil erosion (De Mello et al., 2016; Defersha et al., 2012). 

To aid management and decision-making, all of these sophisticated models are connected with 

the RUSLE model. Although their usefulness varies depending on geographical setting, the 

models incorporate common physical characteristics discovered to be essential from 

observational experience or multivariable statistical analysis, such as slope, precipitation/rainfall, 

vegetation cover, and soil erodibility (Chandramohan et al., 2015; Mello et al., 2016; Igwe et al., 

2017). However, all these initiatives have enabled the current global evaluation of soil erosion. 

However, the RUSLE model is well-known and widely used (Alewell et al., 2019), and it 

represents simple to comprehend and easy-to-apply technology that has been of significant 

assistance to soil conservation and land management. The Revised Universal Soil Loss Equation 

(RUSLE) is an upgrade and improvement of the commonly used Universal Soil Loss Equation 

(USLE) (Rowlands, 2019). RUSLE calculates long-term soil loss with more precision than 

USLE because it incorporates four independent variables: rainfall erosivity (Factor R), soil 

erodibility (K-factor), terrain, and vegetation cover types (Benavidez et al., 2018). As a result, 

with correct assessment of these erosion indices, the RUSLE model may be adapted to the 

Ogwapoke micro catchment, as RUSLE is also suitable for analyzing soil movement at a given 

place. 

2.4 Assessing the impact of land use/cover change on the catchment hydrological flow 

Stream flow or discharge refers to the amount of water that flows past a certain point in a stream 

over a specific time period. The velocity (how fast the water is moving) and volume (the amount 

of water in the stream) components of stream flow combine to determine the energy of the water. 

Water energy has a significant impact on the structure of the stream as well as its biological and 

chemical properties. According to Kelderman et al (2007), wetlands are known for providing 

various ecological functions, including retention of sediments and nutrients from watersheds. 

Wetlands can perform the function of protecting water bodies against eutrophication according to 

Kansiime et al (2007).  Studies done by Kyambadde et al (2004) observed that papyrus and other 

aquatic plants in river beds help in trapping particles by supporting sedimentation and retention 

of particulate matter. They also help in reducing the speed of runoff by the nature of their roots. 



15 
 

This notion is supported by Stromberg et al (2010), plant canopy has a buffering effect on stream 

flow. This leads to the slowing of the runoff across the canopy thus promoting sedimentation. 

The presence of plants lowers the overall velocity of flow, which is a phenomenon that 

encourages deposition of sediments.  

However, according to Seibert & McDonnell (2010), deforestation and built-up area often 

exacerbate stream flows especially in hydrologically fragile sites like wetlands. According to 

Coe et al (2009), when forests are replaced with agricultural crops, there is reduced net surface 

radiation, reduced humidity and recycling and thus rainfall. Reduced evapotranspiration leads to 

low discharge while decreased rainfall also causes reduced discharge. Therefore, decreased 

amounts of rainfall and evapotranspiration affects stream flow in a very complex manner. This 

notion is shared by Sampaio et al (2007) who asserted that deforestation leads to reduction in 

surface roughness, leaf area and rooting depth reduction, negatively affecting the rate at which 

water is lost from leaves and soil, impacting on stream flow. Sampaio et al (2007) therefore 

concludes that the net impact of deforestation is an increase in water yield and stream flow.   

2.4.1 Rainfall-Runoff Models for predicting hydrological flow 

Hydrological models are mathematical representation of rainfall - runoff processes in a 

watershed (Devia et al., 2015). These simulations are based on the hydrological cycle that starts 

with a precipitation event followed by other processes such as surface runoff, infiltration, 

percolation, base flow, evapotranspiration and discharge that is simulated at the catchment outlet. 

Hydrological models play a vital role in understanding catchment processes that is key for water 

resources planning and management. Hydrological models are classified based on their spatial 

extent, nature of basic algorithm used and model input or parameter requirements (Devia et al., 

2015; Trambauer et al., 2013).  

The models classified based on input or parameter requirements are either deterministic or 

stochastic. Deterministic model gives same output from the same input while different outputs 

are obtained from the same input in stochastic models. Models based on spatial extent are further 

divided into lumped, semi-distributed or distributed. Lumped model considers the entire 

catchment as a single unit with disregard for heterogeneity, semi-distributed models divide the 

catchment into sub-catchment from which simulations are done while distributed models cater 
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for spatial heterogeneity by making simulations from smaller units of the entire catchment. And 

those classified according to the nature of basic algorithms are grouped into empirical, 

conceptual or physical.  

Empirical model uses data obtained from either observation or experiment as inputs for 

understanding catchment response to rainfall. Empirical models are simpler and can produce 

reasonable result with limited data requirements compared to conceptual and physical models. 

Conceptual model uses simple mathematical equations to describe all the components of the 

hydrological system while physical models are based on solving governing equation such as the 

equations of conservation of mass and momentum (Kauffeldt et al., 2016). Physical models use 

catchment parameters or variables that are measured in the field or assumed based on catchment 

characteristics. Physical models suffer from the challenge of over parameterization. 

Model selection for predicting hydrological flow 

Model for a particular study is selected based on the objective, scope, temporal and geographical 

resolution of the model (Trambauer et al., 2013). Additional criteria my include ease of access, 

input data requirements, cost, expertise, availability of model code, existing user community, 

flexibility to grid structure, possibility of calibration with suitable tools, data assimilation and 

availability of user manual (Kauffeldt et al., 2016). There are many hydrological modelling tools 

that have been used for watershed scale studies and these includes; MIKE SHE, Hydrologiska 

Byrans Vattenavdelning model (HBV), Variable Infiltration Capacity model (VIC) and Soil and 

Water Assessment Tool (SWAT). 

a) MIKE SHE 

MIKE SHE is an advanced, flexible model created by the Système Hydrologique Européen 

(SHE) (Abbott et al., 1986). The model can simulate surface and ground water flow including 

transport of pollutants such as sediments, nutrients and pesticides in a catchment as such it plays 

a key role in water quantity and quality monitoring. MIKE SHE has a high processing ability but 

its use is limited to smaller catchment due to large data requirements and inability of users to 

modify codes (Devia et al., 2015). 
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b) HBV model (Hydrologiska Byrans Vattenavdelning) 

The HBV is a public domain semi-distributed conceptual hydrologic model used in hydrological 

forecasting and water balance studies (Bergström, 1976). The model divides the entire watershed 

into sub-watersheds based on vegetation and elevation zones. It simulates catchment discharge 

using daily rainfall and air temperature and estimate daily or monthly evapotranspiration. The 

model is less complex and can be run on modest computer. Its outputs are easy to read and it also 

provide sound hydrological information with limited input data. However, the HBV being a 

conceptual model does not take into account the complete physical characteristics of the 

catchment. 

c) VIC model (Variable Infiltration Capacity model) 

The VIC is a semi-distributed grid based hydrological model created by Liang et al (1994) at the 

University of Washington. The model simulates the hydrological cycle based on empirical 

equation of water balance and energy to provide information on the quantity and temporal 

availability of water within the watershed. The VIC model divides the soil into three layers 

where the first layer allow quick evaporation, the second layer represents the dynamic response 

of soil to rainfall event while the third layer characterizes soil moisture levels (Devia et al., 

2015). The main model inputs include; precipitation, temperature, wind speed and land use/cover 

types that are highly differentiated within each grid. The model is open source 

http://github.com/UW-Hydro/VIC with a very active global user community. The model has no 

tool provided for incorporating observation stations, channel losses are not represented in routing 

model and its resolution below 6 km is limited (Kauffeldt et al., 2016). 

d) Soil and Water Assessment Tool (SWAT) 

SWAT is a water basin scale and semi-distributed watershed model that is commonly used to 

forecast the future  influence of land control methods on agricultural chemical outputs, water, 

and sediments,  across longer timeframes in huge complex watersheds with differing soils, land 

cover, and management circumstances (Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.;Williams, 2011). 

It was developed for the United States Department of Agriculture (USDA)-Agricultural Research 

Services (ARS) to assess the impact of human activities on water quantity and quality (Arnold et 

al., 1998). The Digital Elevation Model (DEM) is used to divide the catchment into sub-

http://github.com/UW-Hydro/VIC
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catchments that are further subdivided into Hydrological Response Units (HRUs) based on soil 

type, land use/cover and slope (Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.;Williams, 2011). HRUs 

are areas of the catchment which respond to rainfall events in the same way due to homogenous 

soil, land use/cover and slope characteristics. The HRUs form the basic unit of hydrological 

response in the SWAT model. Simulation of a catchment hydrology in the model is divided into 

land and routing phase. The land phase represents the amount of water and pollutants (sediment, 

nutrient and pesticides) entering the river channel while the routing phase defines the movement 

of water and pollutants through the river channels to the catchment outlet (Neitsch, S.L.; Arnold, 

J.G.; Kiniry, J.R.;Williams, 2011). The model simulates the hydrological cycle based on the 

water balance (Equation 2.4). 
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where SWt is the final soil water content of the day and SWo is the initial soil water content of 

the day, t is time in days, and R, Q, ET, P, and QR are the daily amounts of precipitation, surface 

runoff, evapotranspiration, percolation, and return flow, all measured in millimeters.  

Because the Model is publicly available via http://swat.tamu.edu/, efficient, adaptable, and 

continuous-time model that employs easily available data, the model has been effectively 

deployed in both small and big catchments all over the world (Arnold et al., 1998; Neitsch et al., 

2011). The model also has one of the largest and most active global online user support 

community. The model in addition uses the automatic SWAT-Calibration and Uncertainty 

Procedures (SWAT-CUP) for calibration outside the SWAT software making the process easier. 

Therefore, SWAT model was used in this study to simulate the impact of change in and 

use/cover on the water balance of Ogwapoke micro-catchment. 

Evaluation of model performance 

A model's performance can be evaluated using a variety of approaches, including the coefficient 

of determination (R2), Nash Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS) (Moriasi et 

al., 2007). The R2 is an indicator of strength of linear relationship between the observed and 

simulated discharge values. It describes the proportion of the variance in observed discharge data 

is explained by the model (Moriasi et al., 2007). R2 value ranges from 0 - 1, with higher values 
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indicating less error variance. R2 values >0.5 indicate acceptable model performance (Santhi et 

al., 2001) while a review by Moriasi et al (2015) recommended the use of values >0.6. The NSE 

measures how efficient the plot of daily monitored and simulated discharge fits the 1:1 line and 

its value ranges from – ∞ - 1 with 1 as the optimal value (Moriasi et al., 2007; Santhi et al., 

2001). NSE value of >0.5 is considered satisfactory model performance (Moriasi et al., 2015). 

The PBIAS calculates the average tendency of the generated discharge data to be larger or 

smaller than the observed discharge data with zero as the optimal value (Moriasi et al., 2007). 

PBIAS values ≤ ± 15% is satisfactory for a catchment scale model (Moriasi et al., 2015).  

2.4.2 Siltation of the river 

River siltation is exacerbated by soil erosion caused by agricultural operations, deforestation, 

particularly along river banks, clearing of trees and grasses, and trenches along river banks 

(Terefe, 2020). Siltation from lake basin erosion has a direct negative impact on water creatures 

like fish by burying  breeding  grounds, diminishing benthic food supplies, and hindering water 

clarity for visually feeding animals (Kemp et al., 2011; Wantzen & Mol, 2013). However, 

increased turbidity may have an indirect impact on Lake Biodiversity. Seehausen et al (1997) 

and Taabu-Munyaho et al (2016) demonstrated that increased turbidity (due to deforestation and 

agricultural practices) is to blame for the diversity decline of the cichlid in Lake Victoria by 

decreasing the impact of sexual selection on sexual isolation.  

Actually, colour drives mate selection in these cichlids, and severe assortative mating can 

quickly lead to sexual isolation of colour morphs, which is accelerating and most likely began in 

the 1920s. By constraining color vision, turbidity interferes with mate choice (Ehlman et al., 

2018; Seehausen et al., 1997). The reduced effectiveness of signals causes relaxation of sexual 

selection for color, with consequent loss of male nuptial coloration and erosion of species 

diversity due to a breakdown of reproductive barriers. Dull fish colors, limited color morphs 

variants, and minimal species diversity are prevalent in turbid environments caused by recent 

eutrophication. This is proof that human activities that increase turbidity destroy the mechanism 

of diversification and the maintenance of diversity. 

2.5 Emerging literature gaps/synthesis 

Despite the availability of various remote sensors in the world, this research used Landsat 

satellite images (Thematic mapper (TM) and Operational Land Imager (OLI)). This is because of 
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free accessibility and wide temporal availability since 1972 (Wulder et al., 2012). In addition, 

most of the land use/cover changes worldwide have been conducted using Landsat satellite 

images (Reis, 2008). In northern Uganda, few studies (3) have been conducted about land 

use/cover changes therefore, this study is timely (Kilama Luwa et al., 2020). 

The study adopted the Markov chain and Cellular Automata (CA-Markov) model to understand 

the future state of land use/cover in Ogwapoke micro catchment. This model effectively 

combines the spatial and temporal dynamics in modelling the land use/cover changes of an area 

(Liping et al., 2018). The model is preferred in land use/cover projection because it is efficient, 

easy to calibrate, and has a high ability to simulate multiple LULC and intricate patterns (Behera 

et al., 2012). In addition, the mixed model of CA-Markov incorporates the drivers of land 

use/cover prediction (Yirsaw et al., 2017). Most of the recent studies of land use/cover prediction 

have used the CA-Markov model (Amini Parsa et al., 2016; Dezhkam et al., 2017; Kang et al., 

2019; Q. Wang et al., 2020). The review of literature showed that several studies have been done 

globally about the effects of land use/cover changes on soil erosion (Sharma et al., 2011; Bogale, 

2020; Kogo et al., 2020; Yu et al., 2021), however, few studies have been done about the same in 

Uganda (Mukisa, 2021). Therefore, this study aimed to bridge this knowledge gap by assessing 

the effect of land use/cover changes on soil erosion in Ogwapoke micro catchment. 

This research utilized the Revised Universal Soil Loss Equation (RUSLE) model to determine 

the soil erosion in Ogwapoke micro catchment. This is the mostly used model worldwide to 

assess the soil erosion due to its simple applicability (Ghosal & Das Bhattacharya, 2020). The 

factors of the model (rainfall erosivity, soil erodibility, terrain, and vegetation cover types) can 

be easily integrated with GIS for better analysis (Ganasri & Ramesh, 2016). It also allows to 

estimate deposition through sediment transport (Biswas & Pani, 2015).  

Globally, several studies have been conducted about the effect of land use/cover changes on 

hydrological flow (Mati et al., 2008; Getahun & Van, 2015; Guzha et al., 2018; Martínez-

Retureta et al., 2020). There is also emerging literature about this subject in Uganda (Gabiri et 

al., 2020; Onyutha et al., 2021; Twesige, 2019), however, no such studies have been done in 

northern Uganda, and yet, the area has undergone significant land use/cover changes (MWE, 

2020b). Therefore, the study assessed the impact of land use/cover changes on hydrological flow 

in Ogwapoke catchment using the Soil and Water Assessment Tool (SWAT).  
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SWAT was adopted in this study because it uses the automatic SWAT-Calibration and 

Uncertainty Procedures (SWAT-CUP) for calibration outside the SWAT software making the 

process easier (Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.;Williams, 2011). Other models for 

predicting hydrological flow have limitations for example the use of MIKE SHE is limited to 

smaller catchment due to large data requirements and inability of users to modify codes (Devia et 

al., 2015); the Hydrologiska Byrans Vattenavdelning (HBV) model does not take into account 

the complete physical characteristics of the catchment (Xu et al., 2017); and the Variable 

Infiltration Capacity (VIC) model does not provide tools for incorporating observation stations, 

channel losses are not represented in routing model and its resolution below 6 km is limited 

(Kauffeldt et al., 2016). 
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CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

This chapter explains the methodology that was used in data collection and analysis. The 

contents of this chapter are presented under description of the study, research approach, research 

design, and methods of data collection. 

3.2 Description of study area 

3.2.1 Location 

The Ogwapoke River, a significant river in the Ogwapoke micro watershed, divides Yepa and 

Ogwapoke parishes, and it receives water from other tributaries. Ogwapoke micro catchment is 

located in the Upper Nile basin, Pager Aringa sub catchment in Aswa catchment, found in 

Kitgum District in North Uganda (MWE, 2020a) (Figure 3.1).  Ogwapoke micro catchment 

covers a land area of 16.5 square kilometers with minimum elevation of about 958 meters and 

maximum elevation of 1085 meters above sea level. The micro catchment lies between 

Ogwapoke, Yepa, Pajong and Pubech parishes of Muchuni Subcounty (Figure 3.1) where the 

research was conducted in order to estimate the impact of change in land use/cover on soil 

erosion. The Ogwapoke River, a significant river in the Ogwapoke micro watershed, divides 

Yepa and Ogwapoke parishes, and it receives water from other tributaries. 
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Figure 3:1: Location of Ogwapoke micro catchment 

3.2.2 Vegetation 

The micro catchment is dominated by patches of subsistence farmland with crops like sorghum, 

ground nuts, millet, soya beans and sim-sim. The micro catchment is also dominated with 

grasslands and tree coverage. 

3.2.3 Climate 

Ogwapoke micro-catchment in Aswa Catchment registers an average annual rainfall of about 

1,200 mm, the highest single annual amount being slightly more than 1,420 mm and the lowest 

being about 1,000 mm (MWE, 2013).The mean temperature during the year within the entire 

catchment is about 24°C. This area has high evapotranspiration rates, which affects runoff, 

groundwater recharge, and dry season flows, raising drought hazards (CORDAID & MWE, 

2017). 

3.2.4 Soils and Geology 

The central part of Upper Ogwapoke is underlain by undifferentiated gneisses and granulite 

facies rocks and sediment of alluvium black soil in the south which were formed some 3,000 

million years ago and have been modified and altered by subsequent geological events including 
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the rifting and volcanic activity, as well as the deposition of associated sediments (CORDAID & 

MWE, 2017). 

3.3 Research Design 

Quantitative and qualitative research approach were used and these were drawn from remote 

sensing and questionnaire tool. Remotely sensed Landsat imagery was used for analyzing land 

cover changes in Ogwapoke micro catchment. The advantages of utilizing remote sensing land 

cover monitoring is the ability to capture the continuous expression of land cover trends across 

the landscape as emphasized by Reed et al (2009) and the ability to historically observe land 

cover changes from archived satellite data sets (e.g. Landsat).  

The sample size was determined according to Krejcie & Morgan (1970) (Equation 3.1).  

s = X2NP(1 - P) ÷ d2(N - 1) + X2P(1 - P) …………………………………………….Equation 3.1 

where; 

 s is the required sample size, X2 is the table value of chi-square for 1 degree of freedom at the 

desired confidence level (3.841), N is the population size, P is the population proportion 

(assumed to be .50 which should provide the maximum sample size), and d is the degree of 

accuracy expressed as a proportion (.05). 

The total number of households in Ogwapoke, Yepa, Pajong and Pubech parishes (415) (UBOS, 

2016) was used as N. Therefore, a sample size of 200 households was selected in this study. 

Semi structured questionnaires were used to conduct the household survey in randomly selected  

households within the micro catchment (Nath et al., 2010). The research considered farm 

owners/households that have been resident in the area for 5 years and above to participate in the 

survey.  Household heads or the next of kin in each household were considered for the interview. 

Therefore, the sampling unit was a household while the unit of observation was the head of the 

house or next of kin. The household survey was conducted with the support of respective parish 

and village heads within the selected parishes to ease access to households and prevent 

conducting the survey beyond the micro catchment parish boundaries. Prior to undertaking the 

survey, the questionnaire was pre-tested on ten households within the study area (these were 
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exempted from the main survey) to check for errors and ambiguity and hence improve the 

validity of the survey tools (Grimm, 2010). 

Empirically derived equations and models based on the soil distribution process that combined 

the use of remote sensing, GIS and other advanced scientific and technological means were used 

for soil erosion modelling. These include USLE (Universal Soil Loss Equation) and RUSLE 

(Revised Universal Soil Loss Equation).  

3.4 Analyzing and predicting the spatial-temporal changes in land use/cover  

The Thematic mapper (TM) Landsat imagery for both 1986 and 2003, and Landsat 8 Operational 

Land Imager (OLI) for 2020 were freely acquired from USGS (htpps://earthexplorer.usgs.gov) at 

a 30 m spatial resolution. To generate the land use/cover (LULC) maps using satellite imagery, 

pre-processing was performed, and a classification scheme that defines the LULC classes was 

explored. Six major LULC classes were identified for mapping in Ogwapoke micro catchment. 

These included; built-up areas, croplands/ small scale farming, bushlands, grasslands, woodlands 

and wetlands as described in Table 3.1. 

Under Image processing and classification, Landsat TM/ETM images was resampled from 30m 

spatial resolution prior to image analysis. To reduce the impact of the dust and noise on the 

sensor, the resampled images (30m) were atmospherically adjusted using the Dark Object 

Subtraction process. The method searches and removes dark pixel values. The Landsat imageries 

were classified using a hybrid classification algorithms (supervised and unsupervised 

classification) (Caprioli & Tarantino, 2003) in Arc Map software version 10.8 for spectral 

reflectance clustering. This algorithm provided land use/cover spectral classes in Ogwapoke 

micro catchment. Auxiliary data that included ground-truthing data in form of reference data 

points was captured using the Geographical Positioning System (GPS). The reference data points 

were mainly used to validate the current year (2020) image classification and accuracy 

assessment of the results. Prior to post classification, 500 training sites were randomly 

mapped for validation purposes, which was essential in enhancing the classification accuracy. 
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Table 3.1: Description of land use/cover types 

LULC types Description 

Built-up areas Commercial areas, urban settlements, industrial parks, government and 

institutional buildings, highways, hard surfaces, parking lots, and 

recreational places 

Bushlands Disturbed vegetation that is not cultivated but with trees, shrubs and other 

vegetation 

Grasslands Land covered with grasses and other soft vegetation characterized by 

narrow leaves and hollow stems but not with bushes and trees 

Croplands Agricultural areas characterized with crops like beans, maize, simsim, soya 

beans etc. grown on a small scale  

Wetlands Areas that are seasonally or permanently waterlogged with vegetation 

Woodlands Sparsely scattered trees that have a height beyond the underneath grass 

 

3.4.1 Socio-economic data 

A set of well-structured questions both close and open ended were designed (Appendix 1) and 

the micro-catchment area was clustered by parishes, which included Yepa, Ogwapoke and 

Pajong.  

The questionnaires targeted household heads who were residents in the micro catchment for the 

last 5 years, since they gave detailed insight on the previous and current trends on land use/cover 

and soil eroding within the micro-watershed. The questionnaire tool focused on land use/cover 

changes, status of erosion, drivers of LULC changes & soil erosion, soil conservation method, 

impacts and recommendations for the changes in the micro catchment. The different land covers 

were mapped using the Global positioning system (GPS) in order to verify the land changes 

generated by the satellite images. The drivers of change, impacts of change and soil conservation 

methods were brain stormed by the respondents and filled in the questionnaire tool. The 

sampling methods employed during the research study included sampling clusters for the 

parishes according to the population and simple random sampling for the respondents in the 

study area. The questionnaire method was preferred because it drew information from a wide 

category of respondents (Zohrabi, 2013). Other data collection methods like interviewing, 

observation and recording were used alongside the main questionnaire tool. The questionnaire 

approach also helped to have a better comparison of the outputs obtained from remote sensing 

approach. 
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Data cleaning and coding were done prior to data analysis to obtain accurate information about 

the land use/cover types that may be prone to soil erosion, existing soil and water conservation 

practices, and drivers of change in the last 17-34 years in the micro catchment. IBM SPSS, a 

statistical software widely known as general approach to data analysis was used for data analysis 

of the different variables (Arbuckle, 2012). 

3.4.2 Accuracy Assessment 

The accuracy of the information derived from remotely sensed data is determined through 

accuracy evaluation. It performs best when combined with ground reference data with data 

acquired from aerial images (Zhou et al. 2009). The research captured approximately 500 ground 

truthing points to depict the land use and cover classes on ground within the case study area. 

These were used to calculate the confusion matrix in Ogwapoke micro-catchment. The confusion 

matrix is performed to assess the accuracy of the land cover classification process relative to 

reference data (Comber, 2013). The overall  accuracy (OA), user's accuracy (UA), producer's 

accuracy (PA) and Kappa statistics (K) were derived  from the confusion matrix (Reis, 2008). 

The Kappa (K) statistics combines the off diagonal elements of the error matrices and reflects 

agreement obtained after removing the proportion of an agreement that could be expected to 

occur by chance (Wu et al., 2006). Overall accuracy is a percentage that reflects the likelihood 

that a pixel will be correctly identified/classified by the thematic map. Producer’s accuracy 

denotes the proportion of pixels on the ground that are correctly classified by the one on the map, 

and quantifies the proportion of pixels excluded from a reference classis (omission error). User’s 

accuracy represents the fraction of a category that is incorrectly included in another category 

(commission error) (Foody, 2002).  

The overall accuracy is calculated as in equation (3.2)  

Overall accuracy =  ……………………………………………………Equation 

(3.2) 

where; 

x is the individual cell values, xii is the total number of observations in a row i and column i, 

N=total number of samples.  

On the other hand, Kappa coefficient was computed as in equation (3.3). 
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Kc= …………………………………….Equation 

(3.3) 

where Kc is the kappa coefficient, N is total number of samples, xii is the sum of correctly 

classified pixel, r is the number of rows in the matrix, xit and xti, are the marginal totals of row i 

and column i respectively.  

The IDRISI software's Cellular Automata (CA)-Markov model was used to forecast future 

LULC scenarios. The CA-Markov model was adopted because of its great data efficiency, and 

ease of calibration, as well as its capacity to model different land covers and complicated 

patterns (Memarian et al., 2012; Hyandye et al., 2017) hence qualifying to be widely-used tool 

for land use dynamic simulation capability (Singh et al., 2015;Pan et al., 2017; Lu et al., 2018;). 

The model was built on the Cellular Automata and Markov models, which were created to 

anticipate land cover changes in complex and unpredictable urban areas (Ozturk, 2015). The 

procedures of projecting land use/covers changes with CA-Markov from Clark Labs outlined by 

Pan et al., (2017) and  Liping et al., (2018) in the framework of IDRISI software was used in this 

study. Calculating the transition matrix, generating suitability maps, and predicting the land 

use/cover map were all part of this process. The Land use/cover transition matrix was computed 

from the land use/cover map using the: (I) Markov model; (II) Suitability which was based on 

the assessment indicators (road proximity, water body proximity, elevation, slope, and urban and 

built areas) in the multi-criteria evaluation module; and (III) The spatial distribution of land 

use/cover was simulated by the CA model based on the transition matrix and suitability maps. As 

a result, the land use maps of 2003 and 2020 were utilized as a baseline map, and CA-Markov in 

IDRISI software was used to anticipate and evaluate future land use maps of 2040. 

To ensure model reliability, the CA–Markov model was used to predict land cover status in 2020 

before performing reliable prediction of future land cover patterns. The land cover change map 

was projected using various iteration numbers, i.e., optimum iteration number, to achieve 

significant performance of the used model. The projected LULC map was compared with the 

classified LULC map for validation purposes using the Kappa index statistic (Equation 3.3) 

(Zhang et al., 2011). The validation results were aimed at giving a high level of agreement 

between the actual and predicted maps. 
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3.5 Determining the effect of changes in land use/cover on soil erosion 

In order to determine the micro catchment study area boundary, a freely acquired digital 

elevation model (DEM) with a 30-metre resolution was obtained from 

https://earthexplorer.usgs.gov/. The Uganda soil layer downloaded from www.fao.org, and the 

annual meteorological satellite rainfall data for 2020 from https://power.larc.nasa.gov/data-

access were used in the research. The satellite rainfall data was considered because it was more 

consistent and had no missing data gaps throughout the years than the locally available rainfall 

data. All data used in the research were considered because it was freely acquired. The RUSLE 

Model was employed to generate soil-erosion in the study area. The RUSLE model was 

preferred because it is widely used globally due to its practicality to generate and compute the 

average annual soil erosion rate for different soils and weather conditions (De Mello et al., 

2016). Besides, the model utilizes seemingly low data requirements (Benavidez et al., 2018) 

compared to more complex soil loss models, making it easier to apply in areas with scarce data 

like Ogwapoke micro catchment. The integration of slope length factor in RUSLE enables the 

prediction of soil loss due to overland flow. Therefore, in this research, the soil erosion was 

calculated by multiplying four natural parameters (rainfall erosivity, soil erodibility and slope 

length and slope steepness factors) to identify areas of high vulnerability (Panagos et al., 2015). 

In contrast, the estimated soil erosion (Equation (3.4) was calculated by combining natural and 

anthropogenic components (rainfall erosivity, soil erodibility, slope length and slope steepness, 

cover management, and support practice factors) (Kogo et al., 2020).  

A = R × K × LS × C × P………………………………………………………………..Equation 

(3.4) 

where A denotes the soil loss per unit of area (t ha−1 year−1); R represents rainfall erosivity factor 

(MJ mm ha−1 h−1 year−1); K is soil erodibility factor (t ha−1 MJ−1 mm−1), LS (unit-less) denotes 

topographic factor, C (dimensionless) is a crop management factor, and P (dimensionless) is a 

conservation practice factor.  

The R factor was estimated using (Equation (3.5)) as proposed by (Moore, 1979). 

R = 0.029*(3.96*P+3122)-26…………………………………………………………Equation 

(3.5) 



30 
 

where P is the mean annual precipitation in mm. The long-term mean annual precipitation from 

2019 was determined using NASA's Prediction of Worldwide Energy Resources (NASA 

POWER). 

K Factor 

The K factor expresses the susceptibility of soil erodibility as a result of its soil properties 

(Cassol et al., 2018) as described in table 3.2. The FAO-compiled sand, clay, silt, and organic 

carbon 3fractions were used to determine the soil erodibility factor of the Ogwapoke micro 

catchment using (Equation (3.6)) as proposed by (Anache et al., 2015). Practically, to convert the 

K factor from the American system to the metric system unity/International System of Units (SI), 

A, B, and C were multiplied by 0.1317. However, K factor is derived from a sub equation of 

K = A * B * C * D * 0.1317…………………………………………………………....Equation 

(3.6) 

Table 3.2: K factor detailed description 

K= A x B x C x D x 0.1317   

A Is the factor 

that gives low soil erodibility factors

 for soils with high coarse-

sand contents and 

high values for soils with less sand  

 

= (0 .2+ 0.30exp (-0.0256 SAN(1-  

SIL/100))  

 

SAN 

is the percent sand content 

(0.05–20.00 mm diameter 

particles) 

 SIL  

is the percent silt content 

(0.002–0.05 mm diameter 

particles) 

 

CLA   is the percent clay 

content (<0.002 mm 

diameter particles) 

 

co 

is the percent organic carb

on content of the layer 

and   

SN1 =1-SAN 1 /100 

B is a factor that gives low soil  

erodibility factors 

for soils with high clay to silt ratio 

 =   

  

C is a factor that reduces soil erodibilit

y for soils 

with high organic carbon content  

  

D is a factor that reduces soil erodibilit

y for soils with extremely high sand 

contents  

  

Using an updated soil data, the K value was computed in excel spread sheet for each soil type   

using the A, B, C, D parameters (Error! Reference source not found.) and later an excel table 

0.3( )
( )

SIL

CAL SIL+

0.0256
(1 )

exp(3.72 2.95 )

co

co co
= −

+ −

0.7 1
(1 )

1 exp( 5.51 22.9 1)

SN

SN SN
= −

+ − +
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was joined to the Soil dbf in ArcGIS using the Join and Relate tool. The joined soil map was 

further converted to raster format using the conversion tool in order to be used for analysis while 

creating a raster K factor map. 

Slope Length and Slope Steepness (Factor LS) 

The slope length and steepness factor (LS) is a product of two separate factors: slope length (L) 

and steepness (S), LS Factor. Digital Elevation Model (DEM) (is a raster representation of a 

continuous surface in which each cell represents the elevation at a location) was used as the main 

layer. Slope was derived from Ogwapoke micro catchment masked Uganda’s Digital Elevation 

Model-DEM (STRM) of 30 m spatial resolution using spatial analyst tool in degrees. Flow 

accumulation was also derived from the hydrology tool of spatial analyst. Therefore, factor LS 

was computed and derived (equation 3.7) using the Raster Calculator of Spatial Analyst 

Extension in the ArcGIS environment to obtain a final spatial distribution map. 

………………………Equation (3.7) 

where; 

Grid size = 110m, and slope length exponent m is taken from m-map for respective grid.  

whereby; 

 ………………………………………………..Equation (3.8) 

To calculate Factor F before getting Factor M.  

where; 

Factor F= ((Sin ("Slope"* 0.01745) / 0.0896) / (3 * Power (Sin ("Slope"* 0.01745),0.8) + 

0.56)………………………………………………………………………………....Equation (3.9) 

Therefore, from equation (3.8), 

Factor L=Power (((“Flow accumulation” *grid size)/22.13),” Factor M”)…………Equation 

(3.10) 

 And; 

Factor S =Con ((Tan ("Slope" * 0.01745) < 0.09), (10.08 * Sin ("Slope" * 0.01745) + 0.03), 

(16.8 * Sin ("Slope" * 0.01745) - 0.05))…………………………………………………. 

Equation (3.11) 

( )
22.13

mFlowaccumulationXGridsize
L =

_
_

(1 _F)

Factor F
Factor M

Factor
=

+
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Then; 

Factor LS = Factor L * Factor S……………………………………………………Equation 

(3.12) 

Conservation Practice Factor 

In order to compute the conservation practice Factor C, land use/cover (LULC) map for 2020 

was generated through ArcGIS using the “Iso-cluster unsupervised and maximum like hood” 

tools. The values of conservation practice Factor C were assigned to all the land use/cover 

classes using ArcGIS raster calculator after adding a field in the table of attributes. The Factor C 

attributes ranging between 0-1 for different management practices (Table 3.3) are widely used as 

emphasized and tabulated by (Panagos et al., 2015; Borrelli et al., 2017; Fenta et al., 2020). 

Table 3.3: Land use/land cover classes and respective C-factor value 

Class Small scale 

farming 

Grasslands Bushlands Built-up areas Wetlands Woodlands 

Factor C 0.38 0.15 0.015 0 0 0.015 

 

 

Support practice factor (Factor P) 

However, support practice factor (Factor P) is rarely taken into account in soil erosion modeling 

at large scale, as it is difficult to estimate for large areas. P factor was taken as a unit assuming 

no erosion control practices, it was therefore, assigned to 1. 

GPS points were mapped with high erosion seen in deep valleys along the entire study area and 

the points were overlayed on the RUSLE model for accuracy assessment, areas with steep slope 

had high values as reflected in the model analysis whereas areas with low erosion were seen in 

the low areas with low values. 

The final map that shows the annual soil loss of the micro catchment was produced by 

overlaying the above five parameters (K, R, LS, C, and P) using (Equation 3.4), and raster 

calculator geo-processing tools in Arc GIS 10.8 environment. Each layer was organized in a grid 

format with a resampled cell size (55×55) of the DEM. Furthermore, the statistical tool was used 

to estimate the amount of soil loss and to classify the level of the soil loss in the Ogwapoke 
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micro catchment. After computing the soil erosion loss using the main factors of soil erosion 

(Rainfall erosivity, soil erodibility, slope, and C factor from land use map), results derived from 

the soil erosion model were used as a base factor to determine the estimated soil loss for each 

land use/cover. Soil erosion index was classified and categorized in four classes as follows; low 

erosion, moderate erosion, high erosion and very high erosion based on the rate of erosion 

(t/ha/year). Therefore, more erosion corresponds to very high erosion and least rate of erosion 

correspond to low erosion  (Srinivasan et al., 2019). Therefore, the study considered rate of 

erosion > 1 t/ha/year as low and values > 5 t/ha/year as high.  Secondly, the land use/cover 2020 

was overlaid on the classified erosion indexed layer and area for each index corresponding to a 

particular land use/cover was computed. 

3.6 Assessing land use/cover change impact on the Ogwapoke catchment hydrological 

flow/water balance 

The Land use/cover change effect on stream flow was simulated using the Soil and Water 

Assessment Tool (SWAT model, Arnold et al., 2012). SWAT has been worldwide utilized and 

fully tested for hydrologic modeling at various spatial scales to examine the land use and land 

cover change impacts on watershed water supplies.  The SWAT model (Neitsch et al., 2009; 

Arnold et al., 2012) is a physically based, process-oriented, computationally efficient, semi-

distributed, time continuous catchment model. The model was developed to simulate and 

predict the impacts of land management practices on water quantity and quality over long time 

periods in complex catchments with varying soils, land use, and management conditions. Using 

topographic information, the catchment was partitioned into a number of sub basins in the model. 

Sub-basins are subsequently separated into hydrological response units (HRUs), which are made 

up of a variety of soil, land cover, and slope classes (Arnold et al., 2012). On a daily time scale, 

the model replicates hydrological processes. The hydrological cycle was divided into two parts: 

land and routing (Figure 3.2). The land phase regulates the amount of water, sediment, nutrients, 

and pesticides that enter each sub-main catchment's channel. The land phase involves processes 

like climate, hydrology, erosion, and management operations. The routing phase involves the 

movement of water, through the channel network to the catchment outlet (Neitsch et al. 2009).  
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Figure 3:2: SWAT schematic representation of hydrological cycle. Adopted from Neitsch et al. 

(2009)  

In SWAT, five storages were considered to calculate the water balance and these include the 

canopy storage, the soil profile, snow, a shallow aquifer and a deep aquifer. The water balance is 

expressed as in equation 3.12 

SW𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑎,𝑖 − 𝑊𝑠𝑒𝑒𝑝,𝑖 − 𝑄𝑔𝑤,𝑖)
𝑡
𝑡=1 ……………………………...(Equation 

3.12) 

where SWt is the final soil water content [mm], SW0 is the initial soil water content on day i 

[mm], t is the time [days], Ri is the net precipitation on day i [mm], Qi is the amount of surface 

runoff on day i [mm], ETa,i is the amount of evapotranspiration on day i [mm], Wseep,i is the 

amount of water entering the vadose zone from the soil profile on day i [mm], and Qgw,i is the 

amount of return flow on day i [mm] (Neitsch et al. 2009). 

Model setup, calibration and validation 

The basic initial model setup was carried out with the ArcSWAT interface. This involved 

catchment delineation using a 30 m DEM, subdivision of sub-catchment into HRUs and 

generation of daily climate input files. After the initial setup of ArcSWAT, sensitivity analysis, 

calibration (1986-2003) and validation (2003-2020) was conducted using a standalone program, 

SWAT-CUP (Calibration and Uncertainty program) at the catchment outlet using daily forecast 

reanalysis stream flow (downscaled from Princeton climate for the periods of calibration and 

validation), following the guidelines of  (Abbaspour, 2015). Reanalysis of stream flow data was 

used in the calibration and validation because there were huge data gaps in the measured 

discharge data from the gauging station at the outlet of the catchment, thus, this never rave a 
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representative picture within the catchment. The optimization algorithm, SUFI-2 (Sequential 

Uncertainty Fitting) (Abbaspour, 2015) integrated in SWAT-CUP was adopted for sensitivity 

analysis, calibration and uncertainty analysis. Sensitivity analysis was conducted to determine 

how various sources of uncertainty in a mathematical model contribute to the model's overall 

uncertainty. An uncertainty analysis is crucial to evaluate the strength of a calibrated model 

(Abbaspour, 2015). There exist several uncertainties in hydrological modelling which include 

according to Shen et al (2012), (1) uncertainties in the model structure; (2) uncertainties in model 

parameter estimates; (3) uncertainties in the model drivers (initial and boundary conditions such 

as rainfall, soil and land use); (4) uncertainties that are overlooked by the modeller and not 

included in the model (can be unknown or known processes).  

In SUFI-2, uncertainty of parameters accounts for all sources of uncertainties stated above. 

Accumulation of uncertainties in the parameters results into uncertainties in the model output 

variables, which are expressed as 95% prediction uncertainty. 95% prediction uncertainty 

(95PPU) was calculated at the 2.5 and 97.5 percentiles of the cumulative distribution of an 

output variable attained through Latin Hypercube sampling, ignoring 5% of the very bad 

simulations due to bad parameter combination. The uncertainty band of 95PPU was used to 

account for the modelling uncertainty (Arnold et al., 2012). The degree and strength of 

uncertainties in the model output were measured by the P-factor and the R-factor respectively 

(Abbaspour, 2015). The P-factor is the percentage of measured discharge enveloped by the 

95PPU. The P-factor ranges between 0 and 1, in which 1 means 100% bracketing of the 

measured discharge by the model. The R-factor is the thickness of 95PPU envelop calculated by 

Equation 3.13. The R-factor divides the average distance between 2.5 and 97.5 percentiles with 

the standard deviation of the measured (Arnold et al., 2012). The R-factor ranges from 0 to 

infinity, with values below 1, indicating a small uncertainty band (Arnold et al., 2012). A P-

factor of one and R-factor of zero is a simulation that exactly corresponds to the measured 

discharge. The strength of calibration is judged by the degree of deviation of these numbers. A 

larger P-factor is achieved at the expense of a large R-factor (equation 3.14). 

R − 𝑓𝑎𝑐𝑡𝑜𝑟 =
1

𝑛𝜎𝑜
∑ (𝑆𝑈 − 𝑆𝐿)𝑛

𝑛=1 ………………………………………………....(Equation 3.14) 

where n is the number of observations, 𝜎𝑜 is the standard deviation of the measured discharge, 

𝑆𝑈 and 𝑆𝐿 are the 97.5th and 2.5th percentiles of the simulated 95PPU, respectively. 
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Model evaluation 

SWAT model performance during calibration and validation was evaluated based on three 

statistics, specifically: (1) the coefficient of determination (R2), (Equation 3.15); (2) the Nash-

Sutcliffe efficiency (NSE) (Equation 3.16) (Nash and Sutcliffe, 1970); and the percent bias 

(PBIAS) (Equation 3.17) (Gupta et al., 1999), The coefficient of determination (R2) was used to 

describe the proportion of variance explained by the model and  ranges between 0 and 1.0, with 

high values indicating less error variance (Rathjens and Oppelt, 2012a). The NSE is a 

dimensionless model evaluation index, used to determine the relative magnitude of the residual 

variance between the simulated and measured data variance (Nash and Sutcliffe. 1970) and 

ranges from -∞ to1.0. An NSE of 1.0 indicates a perfect fit between the simulated and observed 

data and it is very responsive to the peak flows (Moriasi et al. 2007). PBIAS was calculated to 

measure the average tendency of the simulated data to be larger or smaller than the measured 

values. The optimal value of PBIAS is 0%, with positive and negative values indicating model 

underestimation and overestimation bias, respectively (Gupta et al., 1999).  

The model performance was considered to be satisfactory if NSE > 0.50, R2 > 0.50, PBIAS 

±25% (Moriasi et al., 2007). These three statistic criteria were enough to evaluate the model 

performance for the study purpose since they capture the low and high flows in the hydrograph. 

Further, these lumped metrics have been established as key model performance benchmarks 

(Moriasi et al., 2015). They provide an average measure of error and are intentionally biased 

towards large magnitude flows and this was partly the objective of the calibration to maximize 

the peaks since the catchment is mainly characterized by low flows for most of the periods due to 

the low rainfall received. NSE is slightly better than R2 for many model applications as it is 

sensitive to the observed and model simulated means and variances (Krause et al., 2005). 

𝑅2 =
[∑ (𝑂𝑖−�̅�)(𝑃𝑖−�̅�)𝑛

𝑖=1 ]
2

∑ (𝑂𝑖−�̅�)2 ∑ (𝑃𝑖−�̅�)2𝑛
𝑖=1

𝑛
𝑖=1

…………………………………………............ 
(Equation 3.15) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

…………………………………………………….. (Equation 3.16) 

 

𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑂𝑖−𝑃𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

……………………………………………………..... 

 

Equation 3.17) 
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where 𝑂𝑖and 𝑃𝑖  are the measured and simulated data, respectively, �̅� and �̅� are the mean of 

measured and simulated data, n is the number of observations. 
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CHAPTER FOUR: RESULTS 

4.1 Analyzing and predicting the Spatial-temporal changes in land use/cover  

Between 1986 and 2003, bushlands, grasslands, wetlands and woodlands continued to shrink 

although slight increases in both small-scale farming and built-up areas were observed. The same 

pattern was still observed between 2003 and 2020 while the main land covers were shrinking in 

area. The estimates of LULC changes show that the built-up and small-scale farming land uses 

have both increased significantly (Table 4.1). In 1986, built-up areas covered 0.1 sq.km which 

increased to 1.6 sq.km and 2.5 sq.km by 2003 and 2020 respectively indicating a 4 % growth in 

the 34 years interval. Table 4.1 also shows that between 1986, 2003 and 2020, small scale 

farming increased to approximately 5.5%, 21.5% and 40.7% respectively. Over the same period, 

bushlands decreased from 23.3% to 20.1%, and to 11.6%. Grassland decreased from 26.2% to 

20.5% and then to 18.8%. Wetlands decreased from 12.9%, 10.5%, and 10.3% whereas 

woodlands decreased from 32.1% to 26.1% and 16.2% over the same study period (Table 4.1).  

However, under the ground survey it was observed that between 1986 and 2003 and 2003-2020, 

built up areas (1.3%, 1.1%) and small-scale farming (16%, 19.2%) respectively increased in 

favour of other land covers (bushlands, grasslands, woodlands and wetlands). The highest 

decrease between 1986 and 2003 was observed in woodlands (6%) followed by grasslands 

(5.7%) whereas 2003-2020, highest decrease was observed in woodlands (9.9%) followed by 

bushlands (8.5%). Wetlands were observed to have the least decrease in changing trends with 

0.1%, 0.2% (Table 4.1) 

Table 4.1: Land use/cover spatial statistics in Ogwapoke micro catchment from1986-2020 

 
1986 

 
2003 

 
2020 

 
Change 

1986-2003 

 
Change 

2003-2020 

 

Land use/ 

cover 

Area 

(Sq.km) 

% Area 

(Sq.km) 

% Area 

(Sq.km) 

% Area 

(Sq.km) 

% Area 

(Sq.km) 

% 

Built-up 

areas 

0.1 0.1 1.6 1.4 2.9 2.5 1.5 1.3 1.3 1.1 

           

Bushlands 27.1 23.3 23.4 20.1 13.5 11.6 -3.7 -3.2 -9.9 -8.5 

           

Grasslands 30.5 26.2 23.9 20.5 21.9 18.8 -6.6 -5.7 -2 -1.7 

           

Small scale 6.5 5.5 25 21.5 47.4 40.7 18.5 16 22.4 19.2 
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farming 

           

Wetlands 15 12.9 12.2 10.5 12.1 10.3 -2.8 -2.4 -0.1 -0.2 

           

           

Woodlands 37.4 32.1 30.4 26.1 18.8 16.2 -7 -6 -11.6 -9.9 

           

TOTAL 116.5 
 

116.5 
 

116.5 
     

Table 4.2 shows results from household survey indicating that small scale farming was replacing 

other land use/cover with a score of 41.5%, followed by woodlands (32.5%) and then grasslands 

(15%). Besides, a number of questionnaires also showed that the earlier years (1986-1990s) 

woodlands, grasslands and bushlands had the highest coverage compared to the 2000s. 

Therefore, the shrinking of land covers from 1986 to 2003 (Table 4.1) and the increasing patterns 

of land uses from 1986 to 2003 shows that this was the same obtained with the observed results 

from the respondents as shown in Table 4.2. 

Table 4.2: Response to the major land use/cover that has been the main replacement of other 

land covers at least in the last 17years 

 

 

Spatial patterns of LULC changes in the study area for 1986, 2003 and 2020 are shown in Figure 

4.1. The research revealed six land use/cover (LULC) classes that were evenly distributed 

throughout Ogwapoke micro catchment between 1986, 2003 and 2020 (Figure 4.1). These LULC 

classes included built-up areas, bushlands, grasslands, small scale farming, wetlands, and 

woodlands with a total coverage of approximately 116.5 sq.km.  

 

Land use/cover No. Respondents  % 

Built-up areas 14 7 

Bushlands 8 4 

Grasslands 30 15 

Small scale farming 83 41.5 

Wetlands 0 0 

Woodlands 65 32.5 

Total  200 100 
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Figure 4:1: Land use/cover spatial distribution in Ogwapoke micro catchment from 1986-2020 

4.1.2 Accuracy assessment 

The results from accuracy assessment (Table 4.3) showed an overall accuracy of 86.6%, 83.8% 

and 82% for the classified images of 1986, 2003 and 2020 respectively (Table 4.3). In 1986, 

user’s accuracy ranged from 81.1% to 94.7% while producer’s accuracy ranged from 82.6% to 

96.0%, while in 2003, user’s accuracy ranged from 81.3% to 94.4% and producer’s accuracy 
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ranged from 81.5% to 85.1% (Table 4.3). In 2020, User’s accuracy ranged from 79.5% to 92.2% 

while producer’s accuracy ranged from 76.5% to 92.2%. Kappa statistics of 0.86, 0.81 and 0.78 

was registered in 1986, 2003 and 2020 respectively (Table 4.3). Therefore, all years were 

considered to have more reliable user and producer accuracies greater than 75% as also agreed 

by a number of research studies like (Ayyanna et al., 2018; Priyadarshini et al., 2018; Garg et al., 

2019). 

Table 4.3: Accuracy assessment 

1986 

Producer accuracy (%) 85.0 87.0 96.0 82.6 88.2 94.8 

User accuracy (%) 81.3 81.1 91.1 94.7 90.1 84.9 

Overall accuracy (OA) - (%)   

88.6  

 

Kappa statistics  0.86  

2003 

Producer accuracy (%) 81.5 84.9 82.1 85.1 84.5 85.0 

User accuracy (%) 81.3 81.6 82.1 88.1 84.5 94.4 

Overall accuracy (OA) - (%) 83.8 
 

Kappa statistics 0.81 

2020 

Producer accuracy (%) 81.3 88.2 82.9 87.8 77.2 76.9 

User accuracy (%) 81.3 82.2 90.0 80.0 92.2 79.5 

Overall accuracy (OA) - (%)    

82.0  

 

Kappa statistics    

0.78  

 

4.1.3 Land use/cover prediction  

The Markov model used in the research also revealed that after 20 years, small scale farming and 

built-up areas are likely to increase tremendously by 9.8% and 3.4% respectively from 2020 to 

2040 (Table 4.4), leaving isolated pockets of wetland and bushlands.  

Table 4.4: LULC change statistics for 2020-2040 and annual rate of change 

 
2020 2040 change2020-2040 

Land use/cover Area (Sq.km) % Area (Sq.km) % Area (Sq.km) % 

       

Built-up areas 2.9 2.5 6.8 5.8 3.9 3.4 
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Bushlands 13.5 11.6 11.5 9.9 -2.0 -1.7  

       

Grasslands 21.9 18.8 13.3 11.4 -8.7 -7.4 

       

Small scale farming 47.4 40.7 58.8 50.4 11.4 9.8 

Wetlands 12.1 10.3 8.0 6.9 -4.1 -3.5 

  
Woodlands 18.8 16.2 18.2 15.6 -0.6 -0.5 

 

The rest of the land covers were predicted to have reduced further compared to the values of 

2020. Woodland had the least reduction followed by bushlands, wetlands and grasslands at 0.5%, 

1.7%, 3.5% and 7.4% respectively. In 2040, only six LULC classes were predicted including 

small scale farming, built-up areas, grasslands, wetlands, bushlands, and woodlands (Figure 4.2). 
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Figure 4:2: Spatial distribution of the predicted land use/cover (2040) in Ogwapoke micro 

catchment 

The respondents also identified that in the last 34 years, animal grazing has been the biggest 

driver for changes in land use/cover change followed by bush burning (Figure 4.3). However, in 

the last 17 years, bush burning was considered to be the main driver of change in the Ogwapoke 

micro- catchment followed animal grazing (Figure 4.3) 
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Figure 4:3: Drivers of land use/cover change in the last 17 and 34 years 

4.2 Determining the effect of land use/cover change on soil erosion   

Rainfall erosivity (R) factor estimation, the result of IDW interpolation using precipitation data 

showed that the mean annual rainfall of the micro catchment ranged from 1419.32 mm to 

1453.85 mm with the highest value in the north eastern part of the micro catchment (Figure 

4.4A). The R-factor value of micro catchment was between 227.6 and 231.4 MJ mm ha−1 

year−1 (Figure 4.4B) with higher values occurring in the north eastern part of the micro 

catchment, and the potential of rainfall to erode soil gradually decreases toward the south and 

south eastern part of the micro catchment. 
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Figure 4:4: Spatial distribution of Rainfall in mm (A), Rainfall erosivity-Rfactor (B), Soil 

types(C), soil erodibility –Kfactor (D) 

Soil erodibility (K) factor estimation.  

The major soil types in the micro catchment are Eutric Regosols, Vertisols, with Eutric Regosols 

covering the largest part of the micro catchment (Figure 4.4C). However, the soil erodibility (K) 

factor value of the micro catchment was constant with 0.2 ha−1 MJ−1 mm−1 in all the soil types 

within the micro catchment (Figure 4.4D).  Therefore, result indicated that about 100% of the 

micro catchment area has a K-value of 0.20 t/ha−1 MJ−1 mm−1.  
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LS factor estimation.   

The slope steepness map (Figure 4.5E) was directly generated from the STRM DEM (30-m 

spatial resolution) map and results revealed that Ogwapoke micro catchment is generally flat 

with a slope ranging between 0.01-5.73 degrees. The slope length and slope steepness factor 

result in figure 4.5F indicated that the slope length and slope steepness (LS) factor value in the 

micro catchment varies from 0 in flat areas to 0.016 in stream bank or slightly hilly areas. The C-

factor value of the watershed ranged from 0 to 0.38 (Figure 4.5H) with the lowest value in 

wetland areas and highest in crop land areas.  

 

Figure 4:5: Spatial distribution of Slope in degrees (E), Slope length-gradient factor-LS factor 

(F), Land use/cover types (G), cover-management – Factor C (H) 
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Table 4.5 summarizes land use/cover classes effects on the annual soil loss in Ogwapoke micro 

catchment. The findings showed that most of the built-up areas and wetlands in Ogwapoke micro 

catchment experience low soil erosion (4% and 17.5% respectively). Most of the bushlands, 

grasslands and woodlands experience moderate soil erosion (17.1%, 31.1% and 21.7% 

respectively) whereas most of the small-scale farmlands have a very high of soil erosion 

(79.9%). Generally, Ogwapoke micro catchment showed a low soil erosion (56.7 sq.km), 

compared to moderate soil erosion (39.7 sq.km), high soil erosion (13.9 sq.km) and very high 

soil erosion (6.2 sq.km) (Table 4.5). 

Table 4.5: Soil erosion coverage in the different land use/cover types in Ogwapoke micro 

catchment 

 
Low soil erosion Moderate soil 

erosion 

High soil erosion Very High soil 

erosion 

Land use/cover Area 

(sq.km) 

% Area 

(sq.km) 

% Area 

(sq.km) 

% Area 

(sq.km) 

% 

Built-Up Areas 9.94 17.54 1.09 2.76 0.46 3.27 0.20 3.29 

         

Bushlands 5.24 9.24 6.79 17.11 0.79 5.70 0.27 4.39 

         

Grasslands 9.58 16.89 12.36 31.14 1.10 7.86 0.28 4.54 

         

Small Scale Farming 18.74 33.05 10.62 26.78 10.16 72.87 4.96 79.99 

Wetlands 2.27 4.01 0.21 0.52 0.07 0.52 0.02 0.38 

         

Woodlands 10.92 19.27 8.61 21.69 1.36 9.79 0.46 7.42 

         

Total 56.7 
 

39.7 
 

13.9 
 

6.2 
 

The respondents revealed that croplands/small scale farming is the most prone land use to soil 

erosion followed by built-up areas and bushlands, since the land surface is always bare and thus, 

exposed to high runoff resulting into surface soil movement downslope (Figure 4.6).  
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Figure 4:6: Land use/cover types perceived to be prone to soil erosion in the catchment 

Figure 4.7 shows the categorization of soil erosion in Ogwapoke micro catchment. Generally, 

Ogwapoke micro catchment has a low soil erosion. 

 

Figure 4:7: Soil Erosion rate (Left) and soil erosion ranking maps according to severity (right) 
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In an effort to reduce the effect of soil erosion, catchment management interventions are 

conducted in the study area and the main interventions according to the respondents include tree 

planting through reforestation (41%), mulching (26%) and vegetated strips/grass bunds (17%) 

(Table 4.6). 

Table 4.6: Existing soil and water conservation practices at the farms (n=200) 

Soil and Water Conservation Practices Frequency Percent 

Reforestation 82 41 

Vegetated strips 33 17 

Contour plowing 5 3 

Stone lining 7 4 

Fallowing 9 5 

Mulching 52 26 

Live hedges 12 6 

TOTAL 200 100 

 

4.3 Assessing the impact of land use/cover change on the catchment hydrological flow 

The effects of land use/cover changes scenarios (from 2003 to 2040) are shown in Table 4.7 for 

the annual water balance components. Surface runoff is highly affected by changes in land 

use/cover change in the micro-catchment. In the year 2020 (scenario 2), it increased by 120% 

and it’s projected to increase by 188% under the projected land use/cover in the year 2040 from 

the reference land use/cover scenario (LULC 1986) (Figure 4.7). 

Table 4.7: Annual water balance components (mm/yr) with regard to land use scenarios 

Water balance components Baseline Scenario 1 

(2003) 

Scenario 2 

(2020) 

Scenario 3 (2040) 

Total water yield 422.1 422.3 424.3 421.2 

     

Base flow 375.2 371.03 363.1 352.1 

     

Surface runoff 12.53 17.3 27.56 36.3 

     

Lateral flow 12.63 12.49 12.54 12.29 

     

Deep aquifer recharge 44.09 43.8 43 42.8 

 

Actual evapotranspiration 531.78 531.8 530.6 533.9 
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Similarly, actual evapotranspiration and total water yield is observed to increase for both land 

use scenarios and these changes will have impacts on the micro-catchment ecosystem services 

and functioning.   

 

 

Figure 4:8: Change in annual water balance components due to land use/cover change in the 

micro-catchment 

Figure 4.9 shows the spatial changes in the annual evapotranspiration (ET), surface runoff and 

total water yield within the micro-catchment due to the effect of land use scenarios. Between 

LULC 1986 and LULC 2003, a decrease (-1.9%) in ET occurred in the most parts of the micro-

catchment with an increase in ET observed in the lower micro-catchment with the highest 

increase of 2.5% from the reference land use/cover situation of the year 1986. For the land 

use/cover scenario of 2020, a decrease in ET occurred in most parts of the micro-catchment, 

however, unlike to the land use/cover scenario of the year 2003, ET increased in the upper 

micro-catchment. According to the projected land use/cover scenario of the year 2040, annual 

ET will have a mixed change spatially in the micro-catchment with the large part of the micro-

catchment experiencing a decrease in annual ET (Figure 4.9).  Surface runoff spatially increased 

across the micro-catchment for all the land use/cover scenarios. The highest increase was 

experienced in the middle part of the micro-catchment between the period of 1986-2003 and the 
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increase in surface runoff spatially expanded to the upper micro-catchment between the periods 

of 1986-2020, indicating an increase in micro-catchment degradation in the upper micro-

catchment (Figure 4.9). According to the projected land use/cover for the year 2040, surface 

runoff is projected to increase up to 100% although slightly lower compared to the land use 

scenarios of the year 2020 and 2003 (Figure 4.10). 

Total water yield increased (up to 3.5%) in most of the sub-basins of the micro-catchment due to 

land use/cover scenarios for the years of 2003 and 2020 from the reference land use scenario of 

the year 1986 (Figure 4.10), indicating availability of water for production in the micro-

catchment. However, the decrease in total water yield also occurred in the two scenarios 

although it was observed that under land use scenario for the year 2020, decrease in total water 

yield spatially increased in the micro-catchment compared to the one of the years 2003. Further, 

the effect of the projected land use/cover situation in the micro-catchment indicates that the 

micro-catchment experiences a decrease in the total water yield (up to 8.6%) in most parts of the 

micro-catchment although some parts experience an   increase in total water yield (Figure 4.9). 

Therefore, there was a projected mixed change in total water yield across the catchment by the 

year 2040 due to the effect of land use/cover. 
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Figure 4:9: Annual change in water balance components with respective to land use scenarios 

from the baseline land use of 1986. ET refers to Actual evapotranspiration; SQ is surface runoff; 

and WYLD is Total water yield 
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Figure 4:10: Annual water balance components change with respect to projected land use/cover scenario 

from the baseline land use of 2020. ET refers to Actual evapotranspiration; SQ is surface runoff; and 

WYLD is Total water yield. 

Figure 4.11 depicts the intra-annual variability in the selected annual water balance components 

(surface runoff, base flow; GW_Q and evapotranspiration; ET) under the different land use 

scenarios in comparison with the reference land use scenario of the year 1986. Accordingly, 

Figure 4.11a, shows that in the land use scenario for the year 2002, an increase in ET occurred in 

the rainy season (April; May, September, October and November) and the month of December 

while for the land use scenario for the year 2020, monthly ET increased across all the seasons in 

the year. Therefore, monthly ET was seasonally affected by the changes in land use/cover within 

the micro-catchment. Figure 4.11b shows that surface runoff increased across all the seasons 

(rainy and dry seasons) with the highest increase in the month of March for both land use 
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scenarios. Surprising is that during the well-known documented dry season (JJA) in Uganda, 

there was relatively high surface runoff which could be attributed to the recent shifts in seasonal 

precipitation due to the effect of climate change across the country. Figure 4.11c shows that base 

flow/groundwater flow increased throughout the months between the land use scenario of 2020 

and reference land use of 1986, with the highest in the months of July and August. While 

between the land use scenarios for the year 2003 and reference 1986, base flow decreased 

throughout the months. Figure 4.11 b shows that the total water yield increased throughout of the 

year with the highest in the months of March and July using a land use scenario 2020 and the 

reference of 1986 regardless of the season. 

 

Figure 4:11: Change in monthly water balance components for land use/cover change scenarios 

compared to the reference scenario of the year 1986. 

Figure 4.12 indicates the change in monthly water balance parameters between projected land 

use/cover scenarios for the year 2040 to the reference land use/cover scenario of 2020 for the 

micro-catchment. In the future, surface runoff is projected to increase throughout all the 

seasons/months. Evapotranspiration will generally decrease except for the rainy periods of April 

and May. Base flow (GW-Q) is also projected to decrease except in the rainy months of March 
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and April which indicate an increase in base flow. In general, total water yield increases except 

in the month of January.  

 

Figure 4:12: Monthly changes in water balance components between projected land use/cover scenario 

for the year 2040 to the reference land use/cover scenario of 2020 for the micro-catchment .Where: ET is 

Evapotranspiration, SURQ is Surface run off , GW_Q Ground water runoff and WYLD is Total water 

yield,  all in in millimeters(mm) 

The effects of major land use/cover types on the water balance components was carried out by 

fitting the percentage of LULC classes (small scale farming and grassland) to the corresponding 

simulated annual surface runoff, base flow and actual evapotranspiration through a linear 

regression shows the different trends on the effect of these LULC classes on these water balance 

parameters. Figure 4.13a indicates that surface runoff is positively correlated to the area of small-

scale farming (R2 =0.97) while base flow also positively correlated to the area of grasslands (R2 

=0.99; Figure 4.13e), indicating that changes in surface runoff and base flow can be directly 

attributed to the changes of small-scale farming and grassland areas, respectively. Figure 4.13d 

shows that surface runoff and percentage of grassland areas are negatively correlated and Figure 

4.13b indicates that base flow and percentage of small-scale farming areas are negatively 

correlated. Therefore, increase in surface runoff can be explained by the interplay between 

grassland depletion and cropland expansion.  
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The trend in the mean annual ET shows a parabolic relationship with the percentage of small-

scale farming and grassland areas. Figure 4.13c shows a parabolic increase in ET with an 

increase in small scale farming areas while a parabolic decrease in ET is observed with an 

increase in grassland areas.  

 

Figure 4:13: Change in surface runoff, base flow, and actual evapotranspiration explained by 

the percentage of small scale farming and grassland in the catchment 
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CHAPTER FIVE: DISCUSSION 

5.1 Spatial-temporal changes in land use/cover in Ogwapoke micro catchment 

The main land use/cover changes in the micro catchment for the period of 1986 and 2020 were 

conversions from grasslands, woodlands, wetlands and bushlands to small scale farming and 

settlements/built up areas in the micro catchment. Some portion of grassland area, woodland 

area, wetlands and bushlands area in the micro-catchment were converted into small scale 

farming and built-up by the year 2020. The same results obtained in the field survey also showed 

the same pattern human activities like bush burning and over grazing were key drivers of land 

use/cover changes. This was attributed to the increase in the demand for food, settlements and 

other natural resources such as firewood due to the increase in population in the catchment. In 

fact, according to UBOS (2016), the population growth rate in the country is 3.3% and Northern 

Uganda accounts for 22% of the total population.  

Therefore, the growth in population density in the region has increasingly led to the exploitation 

of the natural resources in most of the catchments including Ogwapoke catchment (Kilama Luwa 

et al., 2020). Over the period of 34 years (1986-2020), grasslands, bushlands, woodlands and 

wetlands have been undergoing clearance to small scale farming, settlements and charcoal 

burning for livelihoods according to the stakeholders interviewed in the catchment. Therefore, 

LULC changes and the variations in magnitude captured during the study period, confirms that 

there has been land use and land cover changes in the sub catchment, with the land cover types 

being converted into small scaling farming and settlements as land use types. These changes 

affect the catchments stream flow regimes and other ecosystem services and functioning of the 

catchment. Land use and land cover changes to small scale farming and settlements without any 

carefully thought of conservation interventions results into increased water stress for the crops in 

the uplands, flood risks and soil erosion and thus, increased catchment degradation. 

The decrease in land cover types (woodlands, grasslands, woodlands and bushlands) which have 

occurred in the catchment over the period of 1986 to 2020 have also been reported by Nyeko 

(2012)  and Mwanjalolo et al (2018) as an ongoing trend in the Aswa catchment where 

Ogwapoke micro catchment is part of its sub catchment. The authors reported that deforestation 

of woodlands and grasslands for firewood and construction materials including small scale 
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farming is occurring. The change in LULC is also in line with the findings of Egeru & Majaliwa 

(2009) who reported non-uniform LULC changes in northern Uganda specifically Karamoja sub 

region due to the increasing population and poverty rates (UBOS, 2019). In addition,  Kiggundu 

et al (2018)  reports a twofold increase in built up area in the Murchison Bay watershed of Lake 

Victoria Basin due to population increase. LULC changes into small scale farming and 

settlements are the driving forces in the sub Saharan African catchments (Chavula et al., 2011; 

Gashaw et al., 2018). If the situation remains as it is in terms of land use/cover change, the 

projection for land use/cover change from 2020 to 2040 from this study indicates that small scale 

farming and built-up areas has increased at the expense of land cover types. This is likely to 

increase micro-catchment degradation in terms of water resources and soil loss if no 

interventions for catchment management are put in place.  

5.2 Effect of land use/cover change on soil erosion in Ogwapoke micro catchment 

The rate of soil erosion in the micro catchment is still low although the highest rate of erosion is 

not surprising that it is observed in small scale farming. The high rate of erosion in small scale 

farming is due to the decrease in the vegetative cover due to loss of grasslands and woodlands. 

The loss of vegetative cover escalates the increase in the hortanian surface runoff which is 

directly related to soil erosion. An increase in soil erosion in the low vegetation cover such as 

farming and built-up areas is induced by the low tree cover, as a result, interception losses 

increase resulting in a higher net precipitation that reaches the surface and thus, higher soil 

erosion.  Similar findings in the middle and upper reaches of the Heihe River Basin in north 

western China have been confirmed by Li et al (2015), who related an increase in soil erosion to 

the loss of vegetation cover while assessing the influence of changes in land use on the water 

resources.  Further, Nugroho et al (2013) reported an increase in soil erosion due to reduced 

forest vegetation land cover which reduced soil infiltration and interception of through fall. In 

addition, Azanga et al (2016) attributed the increase in sediments and runoff in the Lake 

Tanganyika basin to the increase in cultivated land and built-up areas.  

Furthermore, although soil and water conservation practices are being implemented in the 

catchment (MWE, 2020b), the increasing rate of anthropogenic activities such as bush clearing, 

deforestation, and agriculture among others versus the protection in the sub catchment attribute 

to the increased soil erosion along slopes and the croplands. The study findings concur with 
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results from Hayicho et al (2019) in the Melka Wakena Catchment of Sub-Upper Wabe-Shebelle 

Watershed  in south Eastern Ethiopia and Mbungu (2016) in the Upper Ruvu Watershed of 

Tanzania who found high soil erosion along hilly parts of the watershed and farmlands. The 

increased soil eroding in the catchment farmlands and slopes including the bare lands will affect 

the sub catchment health and stream flow through sedimentation thus, increasing risks of stream 

overflow causing flooding in the lower catchment. Therefore, the increased change in land 

use/cover will result into water shortage, flood risk and severe soil erosion and thus, leading to 

decline in the ecosystem services and functioning in the watershed. 

5.3 Impact of land use/cover change on the hydrological flow in Ogwapoke micro 

catchment 

Increases in specific water balance parameters (water yield and surface runoff) simulated under 

all the land use scenarios is due to the highly increasing changes in land covers to small-scale 

farming and built-up areas. The increase in water yield and surface runoff comes with benefits 

and challenges in the catchment. The benefits include increased water availability and challenges 

include flood risks which hinder the water quality and other ecosystem services and functioning 

of the catchment. The decrease in evapotranspiration is due to the decline in the vegetation 

coverage. The projected increase in surface runoff and water yield for both the rainy and dry 

seasons by the year 2040 from the reference year of 2020 is attributed to the highly projected 

decrease in grasslands, woodlands, bushlands and wetlands with an increase in small scale 

farming and built-up areas. These land use type cause an increase in surface runoff into the river 

network. 

The increase in surface runoff following the conversion of land cover types to small scale 

farming is generally ascribed to the increase in the Hortanian surface runoff, where the canopy 

cover is reduced and infiltration rate of water into the soil is also reduced. This is in line with 

Sullivan et al (2019) who observed an increase in surface runoff and water yield after removing 

woodland riparian vegetation in the Kings Creek watershed on Konza Prairie in northeastern 

Kansas, USA. Giertz et al (2006) discovered that increasing the share of agricultural land 

increases surface runoff. They discovered that infiltration rates in grasslands were much higher 

than in croplands, and that a catchment dominated by cornfield yielded significantly higher 

surface runoff than a catchment dominated by grassland. Donohue et al (2007) demonstrated the 
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important explanatory function of vegetation in catchment hydrology. They showed how 

dynamics of LAI and rooting depth of vegetation affect vegetation water use and therefore water 

flow and for catchments experiencing net vegetation change.  

The reduction of the interception capacity also explains the increase in interflow and base flow 

as through fall increases. Several studies for example (Yira et al., 2016; Siswanto & Francés, 

2019) confirm this claim, attributing the increase in catchment water production and surface 

runoff caused by agricultural land expansion to a decrease in LAI, root depth, vegetation height, 

and stomata conductance. As a consequence, less water is evaporated by interception, through 

fall increases and more water can infiltrate into the soil or flow as infiltration excess runoff. 

Therefore, for this study, the observed increase in surface runoff and a reduction in 

Evapotranspiration for all the agricultural seasons would in the long-time lead to catchment 

degradation and thus, adversely affect the biodiversity functions and other services such as flood 

control, especially in wetlands of the micro-catchment. If poor management practices continue in 

the catchment coupled with increase in population and climate change, the micro catchment is 

most likely to lose its integrity in the near future. 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The study aimed to identify conservation measures and drivers that lead to continuous changes in 

land use/cover so as to combat the long-term effects of soil erosion on hydrological flow in 

Ogwapoke micro catchment. To achieve this, the study utilized questionnaires, Landsat satellite 

images, the Revised Universal Soil Loss Equation (RUSLE) and the Soil and Water Assessment 

Tool (SWAT) models.  

The findings showed that several land use/cover changes have happened in Ogwapoke micro 

catchment between 1986 and 2020. The most significant changes were observed in small-scale 

farmlands, woodlands and bushlands. This change is further predicted to become more intense in 

the next 20 years. These changes in land use/cover are mostly driven by animal grazing, bush 

burning and deforestation.  

The changes in land use/cover have had an impact on soil erosion in the micro catchment. Most 

of the very high soil erosion was experienced by small-scale farmlands. Still, land use/cover 

changes had a significant effect on hydrological response in Ogwapoke micro catchment. 

Between 1986 and 2020, surface runoff and total water yield increased whereas base flow, lateral 

flow, deep aquifer recharge and actual evapotranspiration decreased. The future land use/cover 

changes are expected to have mixed implications on the hydrological components of Ogwapoke 

micro catchment.  

6.2 Recommendations 

Due to increased changes in land use/cover, the government should encourage planting of trees 

in the micro catchment and encourage climate smart practices such as agroforestry, sustainable 

land management etc.  

To control the rate of soil erosion, the study recommends sensitization of locals on land 

degradation and encourage proper farming methods and/ or conservation agricultural practices 

(such as vegetation cover restoration, the creation of slope terraces, and mulch-based cropping 

systems) and sustainable harvesting of trees, reforestation and afforestation. 
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For hydrological flow, there is a need for the decision makers to establish a hydro-

meteorological network in the micro-catchment for future research and sensitize the local 

communities about land degradation.  

Above all, the study suggests that the government should dialogue with communities to come up 

with community-based micro catchment management plans to sustainably manage and conserve 

this area.  

Further research in line with this study should focus on the effect of land use/cover changes on 

water availability to communities, sediment yield, and soil properties (like soil moisture, soil 

organic carbon and soil pH etc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

REFERENCES 

Abbaspour, K. (2015). SWAT‐CUP: SWAT Calibration and Uncertainty Programs ‐ A User 

Manual. Neprashtechnology.Ca. https://doi.org/10.1007/s00402-009-1032-4 

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986). An 

introduction to the European Hydrological System-Systeme Hydrologique Europeen, 

“SHE”, 1: History and philosophy of a physically-based, distributed modelling system. 

Journal of Hydrology, 87, 45–59. 

Aithal, B. H., Vinay, S., & Ramachandra, T. V. (2014). Landscape dynamics modeling through 

integrated Markov, Fuzzy-AHP and cellular automata. International Geoscience and 

Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/IGARSS.2014.6947148 

Albright, T. P., Moorhouse, T. G., & McNabb, T. J. (2004). The rise and fall of water hyacinth in 

Lake Victoria and the Kagera River basin, 1989-2001. Journal of Aquatic Plant 

Management, 42(JUL.), 73–84. 

Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, 

challenges and limitations of soil erosion modelling. In International Soil and Water 

Conservation Research. https://doi.org/10.1016/j.iswcr.2019.05.004 

Amini Parsa, V., Yavari, A., & Nejadi, A. (2016). Spatio-temporal analysis of land use/land 

cover pattern changes in Arasbaran Biosphere Reserve: Iran. Modeling Earth Systems and 

Environment. https://doi.org/10.1007/s40808-016-0227-2 

Anache, J. A. A., Bacchi, C. G. V., Panachuki, E., & Alves Sobrinho, T. (2015). Assessment of 

methods for predicting soil erodibility in soil loss modeling. Geociencias, 34(1). 

Arbuckle, J. (2012). IBM SPSS Amos 21 user’s guide. Crawfordville, FL: Amos Development 

…. http://www.research.swinburne.edu.au/research-

students/documents/IBM_amos_Users_guide.pdf 

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. 

(2013). Soil & Water Assessment Tool: Input/output documentation. version 2012. Texas 

Water Resources Institute, TR-439, 650. 

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., 

Santhi, C., Harmel, R. D., Griensven,  a. Van, VanLiew, M. W., Kannan, N., & Jha, M. K. 

(2012). Swat: Model Use, Calibration, and Validation. Asabe, 55(4), 1491–1508. 

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic 



64 
 

modeling and assessment part 1: Model development. Journal of the American Water 

Resources Association, 34(1), 73–89. 

Ayyanna, Polisgowdar, B. S., Ayyanagowdar, M. S., T. Dandekar, A., Yadahalli, G. S., & 

Bellakki, M. A. (2018). Accuracy Assessment of Supervised and Unsupervised 

Classification using Landsat-8 Imagery of D-7 Shahapur Branch Canal of UKP Command 

Area Karnataka, India. International Journal of Current Microbiology and Applied 

Sciences, 7(07), 205–216. https://doi.org/10.20546/ijcmas.2018.707.025 

Azanga, E., Majaliwa, M., Kansiime, F., Mushagalusa, N., Karume, K., & Tenywa, M. (2016). 

Land-use and land cover, sediment and nutrient hotspot areas changes in Lake Tanganyika 

Basin. African Journal of Rural Development, 1(1978-2017–2066), 75–90. 

Barasa, B., Kakembo, V., Mwololo Waema, T., & Laban, M. (2017). Effects of Heterogeneous 

Land Use/Cover Types on River Channel Morphology in the Solo River Catchment, Eastern 

Uganda. In Geocarto International. https://doi.org/10.1080/10106049.2015.1132480 

Bastiaanssen, W. G. M., Allen, R. G., Droogers, P., D’Urso, G., & Steduto, P. (2007). Twenty-

five years modeling irrigated and drained soils: State of the art. Agricultural Water 

Management, 92(3), 111–125. https://doi.org/https://doi.org/10.1016/j.agwat.2007.05.013 

Behera, M. D., Borate, S. N., Panda, S. N., Behera, P. R., & Roy, P. S. (2012). Modelling and 

analyzing the watershed dynamics using Cellular Automata (CA)-Markov model - A geo-

information based approach. Journal of Earth System Science. 

https://doi.org/10.1007/s12040-012-0207-5 

Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) 

Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability 

and improving soil loss estimates. Hydrology and Earth System Sciences. 

https://doi.org/10.5194/hess-22-6059-2018 

Bergström, S. (1976). Development and application of a conceptual runoff model for 

Scandinavian catchments. 7, 1–162. 

Biswas, S. S., & Pani, P. (2015). Estimation of soil erosion using RUSLE and GIS techniques: a 

case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and 

Environment, 1(4), 1–13. https://doi.org/10.1007/s40808-015-0040-3 

Boers, P. C. M. (1996). Nutrient emissions from agriculture in the Netherlands, causes and 

remedies. Water Science and Technology. https://doi.org/10.1016/0273-1223(96)00229-6 



65 
 

Bogale, A. (2020). Review, impact of land use/cover change on soil erosion in the Lake Tana 

Basin, Upper Blue Nile, Ethiopia. Applied Water Science, 10(12), 1–6. 

https://doi.org/10.1007/s13201-020-01325-w 

Bonilla, C. A., & Johnson, O. I. (2012). Soil erodibility mapping and its correlation with soil 

properties in Central Chile. Geoderma, 189, 116–123. 

https://doi.org/https://doi.org/10.1016/j.geoderma.2012.05.005 

Borrelli, P., Paustian, K., Panagos, P., Jones, A., Schütt, B., & Lugato, E. (2016). Effect of Good 

Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A 

national case study. Land Use Policy, 50, 408–421. 

https://doi.org/10.1016/j.landusepol.2015.09.033 

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, 

K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., & 

Panagos, P. (2017). An assessment of the global impact of 21st century land use change on 

soil erosion. Nature Communications. https://doi.org/10.1038/s41467-017-02142-7 

Brandolini, P., Pepe, G., Capolongo, D., Cappadonia, C., Cevasco, A., Conoscenti, C., Marsico, 

A., Vergari, F., & Del Monte, M. (2018). Hillslope degradation in representative Italian 

areas: Just soil erosion risk or opportunity for development? Land Degradation and 

Development. https://doi.org/10.1002/ldr.2999 

Breuer, L., Huisman, J. A., Willems, P., Bormann, H., Bronstert, A., Croke, B. F. W., Frede, H. 

G., Gräff, T., Hubrechts, L., Jakeman, A. J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, 

D. P., Lindström, G., Seibert, J., Sivapalan, M., & Viney, N. R. (2009). Assessing the 

impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model 

intercomparison with current land use. Advances in Water Resources. 

https://doi.org/10.1016/j.advwatres.2008.10.003 

Bunyangha, J., Majaliwa, M. J. G., Muthumbi, A. W., Gichuki, N. N., & Egeru, A. (2021). Past 

and future land use/land cover changes from multi-temporal Landsat imagery in 

Mpologoma catchment, eastern Uganda. Egyptian Journal of Remote Sensing and Space 

Science. https://doi.org/10.1016/j.ejrs.2021.02.003 

Caprioli, M., & Tarantino, E. (2003). A hybrid land cover classification of Landsat 7 etm+ data 

for an efficient vegetation mapping. Local Resources and Global Trades: Environments and 

Agriculture in the Mediterranean Region, 460. 



66 
 

Cassol, E. A., da Silva, T. S., Eltz, F. L. F., & Levien, R. (2018). Soil erodibility under natural 

rainfall conditions as the K factor of the universal soil loss equation and application of the 

nomograph for a subtropical Ultisol. Revista Brasileira de Ciencia Do Solo. 

https://doi.org/10.1590/18069657rbcs20170262 

Chandramohan, T., Venkatesh, B., & Balchand, A. N. (2015). Evaluation of Three Soil Erosion 

Models for Small Watersheds. Aquatic Procedia. 

https://doi.org/10.1016/j.aqpro.2015.02.156 

Chavula, G., Brezonik, P., & Bauer, M. (2011). Land Use and Land Cover Change ( LULC ) in 

the Lake Malawi Drainage Basin , 1982-2005. 2011(May), 172–178. 

https://doi.org/10.4236/ijg.2011.22018 

Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Deep Learning for Sensor-

Based Human Activity Recognition: Overview, Challenges, and Opportunities. ACM 

Computing Surveys (CSUR), 54(4), 1–40. https://doi.org/10.1145/3447744 

Coe, M. T., Costa, M. H., & Soares-Filho, B. S. (2009). The influence of historical and potential 

future deforestation on the stream flow of the Amazon River - Land surface processes and 

atmospheric feedbacks. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2009.02.043 

Comber, A. J. (2013). Geographically weighted methods for estimating local surfaces of overall, 

user and producer accuracies. Remote Sensing Letters, 4(4). 

https://doi.org/10.1080/2150704X.2012.736694 

CORDAID, & MWE. (2017). Catchment management plan: Lokok catchment support to 

Integrated Water Resources Management in Karamoja for Increased Community Resilience 

Programme. March, 1–217. 

Costa, M. H., Botta, A., & Cardille, J. A. (2003). Effects of large-scale changes in land cover on 

the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology. 

https://doi.org/10.1016/S0022-1694(03)00267-1 

de Koff, J. P., Moore, P. A., Formica, S. J., Van Eps, M., & DeLaune, P. B. (2011). Effects of 

Pasture Renovation on Hydrology, Nutrient Runoff, and Forage Yield. Journal of 

Environmental Quality. https://doi.org/10.2134/jeq2010.0158er 

De Mello, C. R., Norton, L. D., Pinto, L. C., Beskow, S., & Curi, N. (2016). Agricultural 

watershed modeling: A review for hydrology and soil erosion processes. In Ciencia e 

Agrotecnologia. https://doi.org/10.1590/S1413-70542016000100001 



67 
 

Defersha, M. B., Melesse, A. M., & McClain, M. E. (2012). Watershed scale application of 

WEPP and EROSION 3D models for assessment of potential sediment source areas and 

runoff flux in the Mara River Basin, Kenya. Catena. 

https://doi.org/10.1016/j.catena.2012.03.004 

Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A Review on Hydrological Models. 

Aquatic Procedia, 4(Icwrcoe), 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126 

Dezhkam, S., Jabbarian Amiri, B., Darvishsefat, A. A., & Sakieh, Y. (2017). Performance 

evaluation of land change simulation models using landscape metrics. Geocarto 

International. https://doi.org/10.1080/10106049.2016.1167967 

Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2007). On the importance of including 

vegetation dynamics in Budyko’s hydrological model. Hydrology and Earth System 

Sciences, 11(2), 983–995. https://doi.org/10.5194/hess-11-983-2007 

Egeru, A., & Majaliwa, M. (2009). Landuse / Cover Change Trend in Soroti District Eastern 

Uganda. Journal of Applied Sciences and Environmental Management, 13(4), 77–79. 

Ehlman, S. M., Martinez, D., & Sih, A. (2018). Male guppies compensate for lost time when 

mating in turbid water. Behavioral Ecology and Sociobiology, 72(3), 46. 

https://doi.org/10.1007/s00265-018-2468-8 

El Kateb, H., Zhang, H., Zhang, P., & Mosandl, R. (2013). Soil erosion and surface runoff on 

different vegetation covers and slope gradients: A field experiment in Southern Shaanxi 

Province, China. Catena. https://doi.org/10.1016/j.catena.2012.12.012 

Favis-Mortlock, D., & Boardman, J. (1995). Nonlinear responses of soil erosion to climate 

change: a modelling study on the UK South Downs. Catena. https://doi.org/10.1016/0341-

8162(95)00018-N 

Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Poesen, J., Tsubo, M., Borrelli, P., Panagos, P., 

Vanmaercke, M., Broeckx, J., Yasuda, H., Kawai, T., & Kurosaki, Y. (2020). Land 

susceptibility to water and wind erosion risks in the East Africa region. Science of the Total 

Environment. https://doi.org/10.1016/j.scitotenv.2019.135016 

Foody, G. M. (2002). Status of land cover classification accuracy assessment. In Remote Sensing 

of Environment. https://doi.org/10.1016/S0034-4257(01)00295-4 

Gabiri, G., Diekkrüger, B., Näschen, K., Leemhuis, C., van der Linden, R., Mwanjalolo 

Majaliwa, J. G., & Obando, J. A. (2020). Impact of climate and land use/land cover change 



68 
 

on thewater resources of a tropical inland valley catchment in Uganda, East Africa. Climate. 

https://doi.org/10.3390/CLI8070083 

Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote 

sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers. 

https://doi.org/10.1016/j.gsf.2015.10.007 

Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M. J., Bienes, R., González-Andrés, F., & 

Alegre, J. (2013). Use of Mediterranean legume shrubs to control soil erosion and runoff in 

central Spain. A large-plot assessment under natural rainfall conducted during the stages of 

shrub establishment and subsequent colonisation. Catena. 

https://doi.org/10.1016/j.catena.2011.09.003 

Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., & Srivastav, S. K. (2019). 

Human-induced land use land cover change and its impact on hydrology. HydroResearch. 

https://doi.org/10.1016/j.hydres.2019.06.001 

Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Science of the Total Environment 

Modeling the hydrological impacts of land use / land cover changes in the Andassa 

watershed , Blue Nile Basin , Ethiopia. Science of the Total Environment, 619–620, 1394–

1408. https://doi.org/10.1016/j.scitotenv.2017.11.191 

Geissen, V., Sánchez-Hernández, R., Kampichler, C., Ramos-Reyes, R., Sepulveda-Lozada, A., 

Ochoa-Goana, S., de Jong, B. H. J., Huerta-Lwanga, E., & Hernández-Daumas, S. (2009). 

Effects of land-use change on some properties of tropical soils - An example from Southeast 

Mexico. Geoderma. https://doi.org/10.1016/j.geoderma.2009.03.011 

Geist, H. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual 

Review of Environment and the Resources. 

Gemitzi, A. (2021). Predicting land cover changes using a CA Markov model under different 

shared socioeconomic pathways in Greece. GIScience and Remote Sensing. 

https://doi.org/10.1080/15481603.2021.1885235 

Getahun, S., & Van, L. H. (2015). Assessing the Impacts of Land Use-Cover Change on 

Hydrology of Melka Kuntrie Subbasin in Ethiopia, Using a Conceptual Hydrological 

Model. Hydrology: Current Research, 6(3), 1. https://doi.org/10.4172/2157-7587.1000210 

Getu Engida, T., Nigussie, T. A., Aneseyee, A. B., & Barnabas, J. (2021). Land Use/Land Cover 

Change Impact on Hydrological Process in the Upper Baro Basin, Ethiopia. Applied and 



69 
 

Environmental Soil Science. https://doi.org/10.1155/2021/6617541 

Ghosal, K., & Das Bhattacharya, S. (2020). A Review of RUSLE Model. Journal of the Indian 

Society of Remote Sensing, 48(4), 689–707. https://doi.org/10.1007/s12524-019-01097-0 

Giertz, S., Diekkrüger, B., & Steup, G. (2006). Physically-based modelling of hydrological 

processes in a tropical headwater catchment (West Africa) &ndash; process representation 

and multi-criteria validation. Hydrology and Earth System Sciences, 10(6), 829–847. 

https://doi.org/10.5194/hess-10-829-2006 

Girma, R., Fürst, C., & Moges, A. (2022). Land use land cover change modeling by integrating 

artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, 

main Ethiopian rift. Environmental Challenges, 6(December), 100419. 

https://doi.org/10.1016/j.envc.2021.100419 

Godar, J., Gardner, T. A., Jorge Tizado, E., & Pacheco, P. (2014). Actor-specific contributions to 

the deforestation slowdown in the Brazilian Amazon. Proceedings of the National Academy 

of Sciences of the United States of America. https://doi.org/10.1073/pnas.1322825111 

Grimm, P. (2010). Pretesting a Questionnaire. In Wiley International Encyclopedia of Marketing. 

https://doi.org/https://doi.org/10.1002/9781444316568.wiem02051 

Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for 

hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic 

Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4 

Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land 

use and land cover change on surface runoff, discharge and low flows: Evidence from East 

Africa. In Journal of Hydrology: Regional Studies. 

https://doi.org/10.1016/j.ejrh.2017.11.005 

Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-

Markov model under two different scenarios. Sustainability (Switzerland). 

https://doi.org/10.3390/su10103421 

Hasan, S., Shi, W., & Zhu, X. (2020). Impact of land use land cover changes on ecosystem 

service value - A case study of Guangdong, Hong Kong, and Macao in South China. PLoS 

ONE. https://doi.org/10.1371/journal.pone.0231259 

Hayicho, H., Alemu, M., & Kedir, H. (2019). Assessment of Land-Use and Land Cover Change 

Effect on Melka Wakena Hydropower Dam in Melka Wakena Catchment of Sub-Upper 



70 
 

Wabe-Shebelle Watershed , South Eastern. 819–840. 

https://doi.org/10.4236/as.2019.106063 

He, M., & Hogue, T. S. (2012). Integrating hydrologic modeling and land use projections for 

evaluation of hydrologic response and regional water supply impacts in semi-arid 

environments. Environmental Earth Sciences. https://doi.org/10.1007/s12665-011-1144-3 

Holz, D. J., Williard, K. W. J., Edwards, P. J., & Schoonover, J. E. (2015). Soil Erosion in 

Humid Regions: A Review. Journal of Contemporary Water Research & Education. 

https://doi.org/10.1111/j.1936-704x.2015.03187.x 

Hyandye, C., & Martz, L. W. (2017). A Markovian and cellular automata land-use change 

predictive model of the Usangu Catchment. International Journal of Remote Sensing. 

https://doi.org/10.1080/01431161.2016.1259675 

Jordan, G., Van Rompaey, A., Szilassi, P., Csillag, G., Mannaerts, C., & Woldai, T. (2005). 

Historical land use changes and their impact on sediment fluxes in the Balaton basin 

(Hungary). Agriculture, Ecosystems and Environment. 

https://doi.org/10.1016/j.agee.2005.01.013 

Julien, P. (1995). Erosion and Sedimentation. Environmental & Engineering Geoscience, 1(4), 

532–533. 

Kang, J., Fang, L., Li, S., & Wang, X. (2019). Parallel cellular automata markov model for land 

use change prediction over MapReduce framework. ISPRS International Journal of Geo-

Information, 8(10). https://doi.org/10.3390/ijgi8100454 

Kansiime, F., Saunders, M. J., & Loiselle, S. A. (2007). Functioning and dynamics of wetland 

vegetation of Lake Victoria: an overview. Wetlands Ecology and Management, 15(6), 443–

451. https://doi.org/10.1007/s11273-007-9043-9 

Karakus, C. B., Cerit, O., & Kavak, K. S. (2015). Determination of Land Use/Cover Changes 

and Land Use Potentials of Sivas City and its Surroundings Using Geographical 

Information Systems (GIS) and Remote Sensing (RS). Procedia Earth and Planetary 

Science. https://doi.org/10.1016/j.proeps.2015.08.040 

Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., & Thielen, J. (2016). Technical 

review of large-scale hydrological models for implementation in operational flood 

forecasting schemes on continental level. Environmental Modelling and Software, 75, 68–

76. https://doi.org/10.1016/j.envsoft.2015.09.009 



71 
 

Kelderman, P., Kansiime, F., Tola, M. A., & van Dam, A. (2007). The role of sediments for 

phosphorus retention in the Kirinya wetland (Uganda). Wetlands Ecology and Management, 

15(6), 481–488. https://doi.org/10.1007/s11273-007-9048-4 

Kemp, P., Sear, D., Collins, A., Naden, P., & Jones, I. (2011). The impacts of fine sediment on 

riverine fish. Hydrological Processes. https://doi.org/10.1002/hyp.7940 

Kiggundu, N., Anaba, L. A., Banadda, N., Wanyama, J., & Kabenge, I. (2018). Assessing Land 

Use and Land Cover Changes in the Murchison Bay Catchment of Lake Victoria Basin in 

Uganda. Journal of Sustainable Development, 11(1), 44. 

https://doi.org/10.5539/jsd.v11n1p44 

Kilama Luwa, J., Bamutaze, Y., Majaliwa Mwanjalolo, J. G., Waiswa, D., Pilesjö, P., & 

Mukengere, E. B. (2020). Impacts of land use and land cover change in response to 

different driving forces in Uganda: evidence from a review. African Geographical Review. 

https://doi.org/10.1080/19376812.2020.1832547 

Kogo, B. K., Kumar, L., & Koech, R. (2020). Impact of Land Use/Cover Changes on Soil 

Erosion in Western Kenya. In Sustainability (Vol. 12, Issue 22, p. 9740). 

https://doi.org/10.3390/su12229740 

Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for 

hydrological model assessment. Advances in Geosciences, 5, 89–97. 

https://doi.org/10.5194/adgeo-5-89-2005 

Krejcie, R., & Morgan, D. (1970). Determining sample size for research activities. Educational 

and Psychological Measurement, 30(3), 607–610. 

https://doi.org/10.1891/9780826138446.0006 

Kusuma, S. (2015). Application of Land Change Modeler for Prediction of Future Application of 

Land Change Modeler for Prediction of Future Land Use Land Cover a Case Study of 

Vijayawada City. International Journal of Advanced Technology in Engineering and 

Science. 

Kyambadde, J., Kansiime, F., Gumaelius, L., & Dalhammar, G. (2004). A comparative study of 

Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater 

treatment in a tropical climate. Water Research, 38(2), 475–485. 

https://doi.org/https://doi.org/10.1016/j.watres.2003.10.008 

Lal, R. (2003). Soil erosion and the global carbon budget. In Environment International. 



72 
 

https://doi.org/10.1016/S0160-4120(02)00192-7 

Lamek, N., Lanhai, L., Alphonse, K., Fidele, K., Christophe, M., Felix, N., & Enan, M. N. 

(2016). Agricultural impact on environment and counter measures in Rwanda. African 

Journal of Agricultural Research, 11(25), 2205–2212. 

https://doi.org/10.5897/ajar2016.10899 

Li, Yujin, Jiao, J., Wang, Z., Cao, B., Wei, Y., & Hu, S. (2016). Effects of Revegetation on Soil 

Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in 

the Hill and Gully Region of the Loess Plateau. In International Journal of Environmental 

Research and Public Health (Vol. 13, Issue 5, p. 456). 

https://doi.org/10.3390/ijerph13050456 

Li, Yunyun, Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., & Fan, J. (2019). Spatiotemporal 

impacts of land use land cover changes on hydrology from the mechanism perspective using 

SWAT model with time-varying parameters. Hydrology Research. 

https://doi.org/10.2166/nh.2018.006 

Li, Z., Deng, X., Wu, F., & Hasan, S. S. (2015). Scenario Analysis for Water Resources in 

Response to Land Use Change in the Middle and Upper Reaches of the Heihe River Basin. 

In Sustainability (Vol. 7, Issue 3, pp. 3086–3108). https://doi.org/10.3390/su7033086 

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, J. (1994). A simple hydrologically based 

model of land surface water and energy fluxes for general circulation models. Journal of 

Geophysical Research, 99(7), 14415–14428. 

Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover 

changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, 

China. PLoS ONE. https://doi.org/10.1371/journal.pone.0200493 

Lu, Q., Chang, N. Bin, Joyce, J., Chen, A. S., Savic, D. A., Djordjevic, S., & Fu, G. (2018). 

Exploring the potential climate change impact on urban growth in London by a cellular 

automata-based Markov chain model. Computers, Environment and Urban Systems. 

https://doi.org/10.1016/j.compenvurbsys.2017.11.006 

Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Bonan, G., Lawrence, P., McNider, R., 

McAlpine, C., Etter, A., Gameda, S., Qian, B., Carleton, A., Beltran-Przekurat, A., Chase, 

T., Quintanar, A. I., Adegoke, J. O., Vezhapparambu, S., Conner, G., Asefi, S., … Syktus, J. 

(2010). Impacts of land use/land cover change on climate and future research priorities. In 



73 
 

Bulletin of the American Meteorological Society (Vol. 91, Issue 1, pp. 37–46). 

https://doi.org/10.1175/2009BAMS2769.1 

Marie Mireille, N., M. Mwangi, H., K. Mwangi, J., & Mwangi Gathenya, J. (2019). Analysis of 

Land Use Change and Its Impact on the Hydrology of Kakia and Esamburmbur Sub-

Watersheds of Narok County, Kenya. Hydrology. 

https://doi.org/10.3390/hydrology6040086 

Martínez-Retureta, R., Aguayo, M., Stehr, A., Sauvage, S., Echeverría, C., & Sánchez-Pérez, J.-

M. (2020). Effect of land use/cover change on the hydrological response of a southern 

center basin of Chile. In Water (Vol. 12, Issue 1, p. 302). 

https://doi.org/10.3390/w12010302 

Mati, B. M., Mutie, S., Gadain, H., Home, P., & Mtalo, F. (2008). Impacts of land-use/cover 

changes on the hydrology of the transboundary Mara River, Kenya/Tanzania. Lakes & 

Reservoirs: Science, Policy and Management for Sustainable Use, 13(2), 169–177. 

https://doi.org/https://doi.org/10.1111/j.1440-1770.2008.00367.x 

Mbungu, W. (2016). Impacts of Land Use and Land Cover Changes , and Climate Variability on 

Hydrology and Soil Erosion in the Upper Ruvu Watershed , Tanzania. In Virginia 

Polytechnic Institute and State University. 

Meshesha, T. W., Tripathi, S. K., & Khare, D. (2016). Analyses of land use and land cover 

change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa 

Watershed Northern Central Highland of Ethiopia. Modeling Earth Systems and 

Environment. https://doi.org/10.1007/s40808-016-0233-4 

Moore, T. R. (1979). Rainfall Erosivity in East Africa. Geografiska Annaler. Series A, Physical 

Geography. https://doi.org/10.2307/520909 

Moriasi, D., Gitau, M., Pai, N., & Daggupati, P. (2015). Hydrologic and Water Quality Models: 

Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6), 1763–

1785. https://doi.org/https://doi.org/10.13031/trans.58.10715 

Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality 

models: Performance measures and evaluation criteria. American Society of Agricultural 

and Biological Engineers, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715 

Moriasi, N., Arnold, G., Liew, V., Bingner, L., D Harmel, & Veith, L. (2007). Model Evaluation 

Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. 



74 
 

Transactions of the ASABE, 50(3), 885–900. 

https://doi.org/https://doi.org/10.13031/2013.23153 

Mugonola, B., Vranken, L., Macrtens, M., Deckers, J., Taylor, D. B., Bonabana-Wabi, J., & 

Mathijs, E. (2013). Soil and water conservation technologies and technical efficiency in 

banana production in upper Rwizi micro-catchment , Uganda. African Journal of 

Agricultural and Resource Economics. 

Mukisa, G. (2021). Effect of land use/cover changes on soil erosion risk in Mitano catchment, 

south western Uganda. In Kyambogo University, Uganda. 

Munthali, M. G., Davis, N., Adeola, A. M., Botai, J. O., Kamwi, J. M., Chisale, H. L. W., & 

Orimoogunje, O. O. I. (2019). Local perception of drivers of Land-Use and Land- Cover 

change dynamics across Dedza district, Central Malawi region. Sustainability (Switzerland). 

https://doi.org/10.3390/su11030832 

Mwanjalolo, M. G. J., Bernard, B., Paul, M. I., Joshua, W., Sophie, K., Cotilda, N., Bob, N., 

John, D., Edward, S., & Barbara, N. (2018). Assessing the extent of historical, current, and 

future land use systems in Uganda. Land. https://doi.org/10.3390/land7040132 

MWE. (2013). Aswa Catment management Plan. Aswa Catchment Management Plan, 1, 1–104. 

https://www.mwe.go.ug/sites/default/files/library/Aswa CMP Popular Version_0.pdf 

MWE. (2016). Aswa Catchment Management Plan. 

https://www.mwe.go.ug/sites/default/files/library/Aswa CMP Popular Version.pdf 

MWE. (2020a). Joint Technical Review 2020 Detail of Undertaking no . 6 (Issue 6). 

https://mwe.go.ug/sites/default/files/library/6-Progress of Undertaking No-6 .pdf 

MWE. (2020b). Situational Diagnosis Report for Development of Ogwapoke Micro-catchment 

Management Plan. 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - 

A discussion of principles. Journal of Hydrology, 10(3), 282–290. 

https://doi.org/10.1016/0022-1694(70)90255-6 

Nath, C. D., Pélissier, R., & Garcia, C. (2010). Comparative efficiency and accuracy of variable 

area transects versus square plots for sampling tree diversity and density. Agroforestry 

Systems, 79(2), 223–236. https://doi.org/10.1007/s10457-009-9255-5 

Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.;Williams, J. . (2011). Soil & Water Assessment Tool 

Theoretical Documentation Version 2009. 



75 
 

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., 

Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-

Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … 

Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature. 

https://doi.org/10.1038/nature14324 

Nugroho, P., Marsono, D., Sudira, P., & Suryatmojo, H. (2013). Impact of Land-use Changes on 

Water Balance. Procedia Environmental Sciences, 17, 256–262. 

https://doi.org/https://doi.org/10.1016/j.proenv.2013.02.036 

Nwaogu, C., Benc, A., & Pechanec, V. (2018). Prediction Models for Landscape Development in 

GIS BT  - Dynamics in GIscience (I. Ivan, J. Horák, & T. Inspektor (eds.); pp. 289–304). 

Springer International Publishing. 

Nyeko, M. (2012). GIS and Multi-Criteria Decision Analysis for Land Use Resource Planning. 

Journal of Geographic Information System, 04(04), 341–348. 

https://doi.org/10.4236/jgis.2012.44039 

Ochoa, P. A., Fries, A., Mejía, D., Burneo, J. I., Ruíz-Sinoga, J. D., & Cerdà, A. (2016). Effects 

of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. 

Catena. https://doi.org/10.1016/j.catena.2016.01.011 

Olson, K. R., Al-Kaisi, M., Lal, R., & Cihacek, L. (2016). Impact of soil erosion on soil organic 

carbon stocks. Journal of Soil and Water Conservation. 

https://doi.org/10.2489/jswc.71.3.61A 

Onyutha, C., Turyahabwe, C., & Kaweesa, P. (2021). Impacts of climate variability and 

changing land use/land cover on River Mpanga flows in Uganda, East Africa. 

Environmental Challenges, 5, 100273. 

https://doi.org/https://doi.org/10.1016/j.envc.2021.100273 

Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular 

automata-Markov chain and Multi-layer Perceptron-Markov chain models. Remote Sensing. 

https://doi.org/10.3390/rs70505918 

P.U., I., A.A., O., O.C., C., I.I., E., & M.M., M. (2017). Soil Erosion: A Review of Models and 

Applications. International Journal of Advanced Engineering Research and Science. 

https://doi.org/10.22161/ijaers.4.12.22 

Pan, S., Liu, D., Wang, Z., Zhao, Q., Zou, H., Hou, Y., Liu, P., & Xiong, L. (2017). Runoff 



76 
 

responses to climate and land use/cover changes under future scenarios. Water 

(Switzerland). https://doi.org/10.3390/w9070475 

Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015). 

Estimating the soil erosion cover-management factor at the European scale. Land Use 

Policy, 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021 

Parsaie, A. (2016). Analyzing the distribution of momentum and energy coefficients in 

compound open channel. Modeling Earth Systems and Environment, 2(1), 1–5. 

https://doi.org/10.1007/s40808-015-0054-x 

Peng, T., & Wang, S. (2012). Effects of land use, land cover and rainfall regimes on the surface 

runoff and soil loss on karst slopes in southwest China. CATENA, 90, 53–62. 

https://doi.org/https://doi.org/10.1016/j.catena.2011.11.001 

Polyakov, V. O., & Lal, R. (2008). Soil organic matter and CO2 emission as affected by water 

erosion on field runoff plots. Geoderma, 143(1–2), 216–222. 

https://doi.org/10.1016/j.geoderma.2007.11.005 

Pontius Jr., R. G., & Chen, H. (2006). GEOMOD Modeling. Clark Labs, 1–44. 

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B. L., 

Dietrich, J. P., Doelmann, J. C., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, 

A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., … Vuuren, D. P. va. 

(2017). Land-use futures in the shared socio-economic pathways. Global Environmental 

Change. https://doi.org/10.1016/j.gloenvcha.2016.10.002 

Priyadarshini, K., Kumar, M., Rahaman, S., & Nitheshnirmal, S. (2018). A comparative study of 

advanced land use/land cover classification algorithms using Sentinel-2 data. The 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 42(5), 20–23. https://doi.org/10.5194/isprs-archives-xlii-5-665-2018 

Pulley, S., & Collins, A. L. (2019). Field-based determination of controls on runoff and fine 

sediment generation from lowland grazing livestock fields. Journal of Environmental 

Management. https://doi.org/10.1016/j.jenvman.2019.109365 

Rao, K. S., & Pant, R. (2001). Land use dynamics and landscape change pattern in a typical 

micro watershed in the mid elevation zone of central Himalaya, India. Agriculture, 

Ecosystems and Environment, 86(2), 113–124. https://doi.org/10.1016/S0167-

8809(00)00274-7 



77 
 

Rathjens, H., & Oppelt, N. (2012). SWAT model calibration of a grid-based setup. Advances in 

Geosciences, 32, 55–61. https://doi.org/10.5194/adgeo-32-55-2012 

Raytheon, T., Moorhouse, T., & McNabb, T. (2002). The abundance and distribution of water 

hyacinth in Lake Victoria and the Kagera River Basin, 1989-2001. USGS/EROS Data 

Center and Clean Lakes. Inc, 42. 

Reed, B. C., Schwartz, M. D., & Xiao, X. (2009). Remote Sensing Phenology BT  - Phenology of 

Ecosystem Processes: Applications in Global Change Research (A. Noormets (ed.); pp. 

231–246). Springer New York. https://doi.org/10.1007/978-1-4419-0026-5_10 

Regmi, R. R., Saha, S. K., & Subedi, D. S. (2017). Geospatial Analysis of Land Use Land Cover 

Change Modeling in Phewa Lake Watershed of Nepal by Using GEOMOD Model. 

Himalayan Physics. https://doi.org/10.3126/hj.v6i0.18363 

Reid, R. S., Kruska, R. L., Muthui, N., Taye, A., Wotton, S., Wilson, C. J., & Mulatu, W. (2000). 

Land-use and land-cover dynamics in response to changes in climatic, biological and socio-

political forces: The case of southwestern Ethiopia. Landscape Ecology, 15(4), 339–355. 

https://doi.org/10.1023/A:1008177712995 

Reis, S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, 

North-East Turkey. Sensors. https://doi.org/10.3390/s8106188 

Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and modeling of 

spatiotemporal urban expansion and land-use/land-cover change using integrated Markov 

chain cellular automata model. ISPRS International Journal of Geo-Information, 6(9). 

https://doi.org/10.3390/ijgi6090288 

Rowlands, L. (2019). Erosion and sediment control—WSUD during the construction phase of 

land development. Approaches to Water Sensitive Urban Design, 163–176. 

https://doi.org/https://doi.org/10.1016/B978-0-12-812843-5.00008-3 

Sambou, S. (2015). Land Use-Land Cover Change and Drivers of Deforestation in the Patako 

Protected Area (Center-West of Senegal). American Journal of Environmental Protection. 

https://doi.org/10.11648/j.ajep.20150406.17 

Samndong, R. A., Bush, G., Vatn, A., & Chapman, M. (2018). Institutional analysis of causes of 

deforestation in REDD+ pilot sites in the Equateur province: Implication for REDD+ in the 

Democratic Republic of Congo. Land Use Policy. 

https://doi.org/10.1016/j.landusepol.2018.02.048 



78 
 

Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares-Filho, B. S., & Cardoso, M. 

(2007). Regional climate change over eastern Amazonia caused by pasture and soybean 

cropland expansion. Geophysical Research Letters, 34(17). 

https://doi.org/https://doi.org/10.1029/2007GL030612 

Sang-Arun, J., Mihara, M., Horaguchi, Y., & Yamaji, E. (2006). Soil erosion and participatory 

remediation strategy for bench terraces in northern Thailand. Catena. 

https://doi.org/10.1016/j.catena.2005.11.010 

Santhi, C., Arnold, J., Williams, J., Dugas, W., Srinivasan, R., & Hauck, L. (2001). Validation of 

the SWAT model on a large river basin with point and non point sources. Journal of the 

American Water Resources Association, 37(5), 1169–1188. 

Sasal, M. C., Castiglioni, M. G., & Wilson, M. G. (2010). Effect of crop sequences on soil 

properties and runoff on natural-rainfall erosion plots under no tillage. Soil and Tillage 

Research. https://doi.org/10.1016/j.still.2010.03.010 

Schroeder, S. B., Dupont, C., Boyer, L., Juanes, F., & Costa, M. (2019). Passive remote sensing 

technology for mapping bull kelp (Nereocystis luetkeana): A review of techniques and 

regional case study. In Global Ecology and Conservation. 

https://doi.org/10.1016/j.gecco.2019.e00683 

Seehausen, O., Van Alphen, J. J. M., & Witte, F. (1997). Cichlid fish diversity threatened by 

eutrophication that curbs sexual selection. Science. 

https://doi.org/10.1126/science.277.5333.1808 

Seibert, J., & McDonnell, J. J. (2010). Land-cover impacts on streamflow: a change-detection 

modelling approach that incorporates parameter uncertainty. Hydrological Sciences 

Journal, 55(3), 316–332. https://doi.org/10.1080/02626661003683264 

Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Effect of land use land cover change on 

soil erosion potential in an agricultural watershed. Environmental Monitoring and 

Assessment, 173(1–4), 789–801. https://doi.org/10.1007/s10661-010-1423-6 

Shen, Z. Y., Chen, L., & Chen, T. (2012). Analysis of parameter uncertainty in hydrological and 

sediment modeling using GLUE method: a case study of SWAT model applied to Three 

Gorges Reservoir Region, China. Hydrology and Earth System Sciences, 16(1), 121–132. 

https://doi.org/10.5194/hess-16-121-2012 

Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting Spatial and 



79 
 

Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth 

Observation Datasets and Geo-information. Environmental Processes. 

https://doi.org/10.1007/s40710-015-0062-x 

Siswanto, S. Y., & Francés, F. (2019). How land use/land cover changes can affect water, 

flooding and sedimentation in a tropical watershed: a case study using distributed modeling 

in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences, 78(17), 1–15. 

https://doi.org/10.1007/s12665-019-8561-0 

Specht, M. J., Pinto, S. R. R., Albuqueque, U. P., Tabarelli, M., & Melo, F. P. L. (2015). Burning 

biodiversity: Fuelwood harvesting causes forest degradation in human-dominated tropical 

landscapes. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2014.12.002 

Srinivasan, R., Singh, S. K., Nayak, D. C., Hegde, R., & Ramesh, M. (2019). Estimation of soil 

loss by USLE model using remote sensing and GIS Techniques - A case study of Coastal 

Odisha, India. Eurasian Journal of Soil Science, 8(4). https://doi.org/10.18393/ejss.598120 

Stromberg, J. C., Lite, S. J., & Dixon, M. D. (2010). Effects of stream flow patterns on riparian 

vegetation of a semiarid river: Implications for a changing climate. River Research and 

Applications, 26(6), 712–729. https://doi.org/https://doi.org/10.1002/rra.1272 

Stuart, G. W., & Edwards, P. J. (2006). Concepts about forests and water. In Northern Journal of 

Applied Forestry. https://doi.org/10.1093/njaf/23.1.11 

Sullivan, P. L., Stops, M. W., Macpherson, G. L., Li, L., Hirmas, D. R., & Dodds, W. K. (2019). 

How landscape heterogeneity governs stream water concentration-discharge behavior in 

carbonate terrains (Konza Prairie, USA). Chemical Geology, 527, 118989. 

https://doi.org/https://doi.org/10.1016/j.chemgeo.2018.12.002 

Taabu-Munyaho, A., Marshall, B. E., Tomasson, T., & Marteinsdottir, G. (2016). Nile perch and 

the transformation of Lake Victoria. In African Journal of Aquatic Science. 

https://doi.org/10.2989/16085914.2016.1157058 

Tang, L., Yang, D., Hu, H., & Gao, B. (2011). Detecting the effect of land-use change on 

streamflow, sediment and nutrient losses by distributed hydrological simulation. Journal of 

Hydrology. https://doi.org/10.1016/j.jhydrol.2011.08.015 

Terefe, H. (2020). Effect of integrated land management, slope position and land-use type on soil 

physicochemical properties, discharge, species richness and carbon stock in Geda 

watershed, north Shewa Ethiopia. In Center for Environmental Science, Addis Ababa 



80 
 

University. 

Trambauer, P., Maskey, S., Winsemius, H., Werner, M., & Uhlenbrook, S. (2013). A review of 

continental scale hydrological models and their suitability for drought forecasting in (sub-

Saharan) Africa. Physics and Chemistry of the Earth, 66, 16–26. 

https://doi.org/10.1016/j.pce.2013.07.003 

Turner, B. L. 2nd, Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science 

for global environmental change and  sustainability. Proceedings of the National Academy 

of Sciences of the United States of America, 104(52), 20666–20671. 

https://doi.org/10.1073/pnas.0704119104 

Twesige, J. (2019). Hydrological Response to Land use and Land Cover Change in Katonga 

River Basin, Uganda. In Pan-African University Institute for Water and Energy Sciences 

(Including Climate Change). 

UBOS. (2016). The National Population and Housing Census 2014 - Main Report, kampala. 

Uganda. Uganda Bureau of Statistics, 1–105. 

UBOS. (2019). The State of Uganda Population Report. In United Nations Population Fund 

(Vol. 53, Issue 9). 

van Oost, K., van Rompaey, A., Poesen, J., Govers, G., & Verstraeten, G. (2002). Evaluating an 

integrated approach to catchment management to reduce soil loss and sediment pollution 

through modelling. Soil Use and Management. https://doi.org/10.1079/sum2002150 

Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: 

Current practice and research priorities. GeoJournal, 61(4), 309–324. 

https://doi.org/10.1007/s10708-004-4946-y 

Wairiu, M. (2017). Land degradation and sustainable land management practices in Pacific 

Island Countries. In Regional Environmental Change. https://doi.org/10.1007/s10113-016-

1041-0 

Wang, J., Sammis, T. W., Gutschick, V. P., Gebremichael, M., Dennis, S. O., & Harrison, R. E. 

(2010). Review of Satellite Remote Sensing Use in Forest Health Studies~!2010-01-

27~!2010-04-05~!2010-06-29~! The Open Geography Journal. 

https://doi.org/10.2174/1874923201003010028 

Wang, Q., Xu, Y., Wang, Y., Zhang, Y., Xiang, J., Xu, Y., & Wang, J. (2020). Individual and 

combined impacts of future land-use and climate conditions on extreme hydrological events 



81 
 

in a representative basin of the Yangtze River Delta, China. Atmospheric Research, 236, 

104805. https://doi.org/https://doi.org/10.1016/j.atmosres.2019.104805 

Wantzen, K. M., & Mol, J. H. (2013). Soil erosion from agriculture and mining: A threat to 

tropical stream ecosystems. Agriculture (Switzerland). 

https://doi.org/10.3390/agriculture3040660 

Wasige, J. E., Groen, T. A., Smaling, E., & Jetten, V. (2013). International Journal of Applied 

Earth Observation and Geoinformation Monitoring basin-scale land cover changes in 

Kagera Basin of Lake Victoria using ancillary data and remote sensing. International 

Journal of Applied Earth Observations and Geoinformation, 21, 32–42. 

https://doi.org/10.1016/j.jag.2012.08.005 

Welde, K., & Gebremariam, B. (2017). Effect of land use land cover dynamics on hydrological 

response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. 

International Soil and Water Conservation Research. 

https://doi.org/10.1016/j.iswcr.2017.03.002 

Wu, Q., Li, H. qing, Wang, R. song, Paulussen, J., He, Y., Wang, M., Wang, B. hui, & Wang, Z. 

(2006). Monitoring and predicting land use change in Beijing using remote sensing and 

GIS. Landscape and Urban Planning. https://doi.org/10.1016/j.landurbplan.2005.10.002 

Wubie, M. A., Assen, M., & Nicolau, M. D. (2016). Patterns, causes and consequences of land 

use/cover dynamics in the Gumara watershed of lake Tana basin, Northwestern Ethiopia. 

Environmental Systems Research. https://doi.org/10.1186/s40068-016-0058-1 

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). 

Opening the archive: How free data has enabled the science and monitoring promise of 

Landsat. Remote Sensing of Environment, 122, 2–10. 

https://doi.org/https://doi.org/10.1016/j.rse.2012.01.010 

Wynants, M., Solomon, H., Ndakidemi, P., & Blake, W. H. (2018). Pinpointing areas of 

increased soil erosion risk following land cover change in the Lake Manyara catchment, 

Tanzania. International Journal of Applied Earth Observation and Geoinformation. 

https://doi.org/10.1016/j.jag.2018.05.008 

Xu, M., Han, H., & Kang, S. (2017). Modeling Glacier Mass Balance and Runoff in the Koxkar 

River Basin on the South Slope of the Tianshan Mountains, China, from 1959 to 2009. In 

Water (Vol. 9, Issue 2, p. 100). https://doi.org/10.3390/w9020100 



82 
 

Yang, H., Li, S., Chen, J., Zhang, X., & Xu, S. (2017). The Standardization and harmonization of 

land cover classification systems towards harmonized datasets: A review. In ISPRS 

International Journal of Geo-Information. https://doi.org/10.3390/ijgi6050154 

Yang, L., Xian, G., Klaver, J. M., & Deal, B. (2003). Urban land-cover change detection through 

sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric 

Engineering and Remote Sensing, 69(9), 1003–1010. 

https://doi.org/10.14358/PERS.69.9.1003 

Yira, Y., Diekkrüger, B., Steup, G., & Bossa, A. Y. (2016). Modeling land use change impacts 

on water resources in a tropical West African catchment (Dano, Burkina Faso). Journal of 

Hydrology, 537, 187–199. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.03.052 

Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land Use/Land Cover change 

modeling and the prediction of subsequent changes in ecosystem service values in a coastal 

area of China, the Su-Xi-Chang region. Sustainability (Switzerland), 9(7), 1–17. 

https://doi.org/10.3390/su9071204 

Yu, S., Wang, F., Qu, M., Yu, B., & Zhao, Z. (2021). The Effect of Land Use/Cover Change on 

Soil Erosion Change by Spatial Regression in Changwu County on the Loess Plateau in 

China. In Forests (Vol. 12, Issue 9, p. 1209). https://doi.org/10.3390/f12091209 

Yue, Y., Keli, Z., Liang, L., Qianhong, M., & Jianyong, L. (2019). Estimating long-term erosion 

and sedimentation rate on farmland using magnetic susceptibility in northeast China. Soil 

and Tillage Research. https://doi.org/10.1016/j.still.2018.11.011 

Zhang, Q., Ban, Y., Liu, J., & Hu, Y. (2011). Simulation and analysis of urban growth scenarios 

for the Greater Shanghai Area, China. Computers, Environment and Urban Systems. 

https://doi.org/10.1016/j.compenvurbsys.2010.12.002 

Zhou, W., Huang, G., Troy, A., & Cadenasso, M. L. (2009). Object-based land cover 

classification of shaded areas in high spatial resolution imagery of urban areas: A 

comparison study. Remote Sensing of Environment. 

https://doi.org/10.1016/j.rse.2009.04.007 

Zohrabi, M. (2013). Mixed method research: Instruments, validity, reliability and reporting 

findings. Theory and Practice in Language Studies. https://doi.org/10.4304/tpls.3.2.254-262 

 



83 
 

APPENDICES 

Appendix 1: Sample field survey Questionnaire 

 

QUESTIONNAIRE FOR STUDY LEADING TO MASTER OF SCIENCE IN 

CONSERVATION AND NATURAL RESOURCE MANAGEMENT –KYAMBOGO, 

KAMPALA 

 

I……………………………………….a student of Kyambogo  University, I kindly request you 

to provide me information on Landcover, soil   and hydrological trends and all your views will 

be treated with utmost confidentiality. 

The information provided will be key in attaining my Master’s degree as indicated above under 

the Topic “impact of land use/cover change on soil erosion potential in Ogwapoke sub-

catchment, northern Uganda”. The researcher therefore requests your consent to participation 

in this study. Your cooperation will be highly appreciated. Thank you. 

 

RESPONDENT’S BIODATA 

Household location 

X: ………………………………. Y: …………………………….. 

 

Name of respondent: ……………………………………………………………… 
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Sex: 

Female   Male 

Age: 

18year     18-25years 

25-30years     <30 years 

 

 District………………………………  Sub county……………………… 

 

Parish/Ward: …………………………… 

 

A: LAND USE/COVER 

1. Identify the main land use/cover (LULC) in Ogwapoke micro catchment 

………………………………………………………………………………………………………

……………………………………………………………………………………………………… 

2. When did you start occupying this land (Year)? 

……………………………………………………………………………………………………… 

3. Before occupying this land, which land covers were present? 

X:  

Y: 

X:  

Y: 

X:  

Y: 
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4. Identify the main land covers that have occurred in the last 17years and 34 years (tick where 

appropriate) 

Years Grassland Bushland woodland wetlands crops Built-up 

areas 

Last 17 years       

Last 34 years       

 

4b). Which of the above land use/cover has been main replacement of other land covers at least 

in the last 17years? (Tick where appropriate) 

Grassland Bushland woodland wetlands crops Built-up areas 

      

 

5. Briefly describe the main drivers of land use change in the previous years stated in the table 

above 

………………………………………………………………………………………………………

……………………………………..……………………………………………………………….. 
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B: SOIL EROSION 

1. What types of crops do you grow? 

......................................................................................................................................... 

 

2. Where do you grow them? 

Flat land     Slightly Hilly    Hilly land  

3. Do you experience soil erosion in the micro catchment? 

Yes    No  

3b).  If yes, identify the main soil erosion agents in Ogwapoke micro catchment 

Wind      Water 

3c).  How do you rate the amount of soil erosion that occurs in the micro catchment? 

Very high (75-100%)    High (50-75%) 

Moderate (25-50%)     Low (0-25%) 

 

4. What are main drivers of soil erosion in Ogwapoke micro catchment? 

Topography    Poor soils  Poor road construction 

High rainfall    Poor farming methods   None 

 

5. Identify the major land cover that are more prone to soil erosion loss 

Grassland   Wetland  Built-up areas 

 

Bush   Woodland  Croplands  

 

 
 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




